Study of High Power Dynamic Charging System

Paper #:
  • 2017-01-1245

Published:
  • 2017-03-28
Author(s):
Affiliated:
Abstract:
Reducing the amount of CO2 emissions to zero while driving is considered an important goal for the mobility sector in order to achieve a zero CO2 society. A key point in achieving this is the further evolution of electrified vehicles that are driven only by motors and are not equipped with a generator that uses fossil fuels, that is to say electric vehicles (EV) and fuel cell vehicles (FCV). Major issues facing EV include range, charging (hassle, time, construction of infrastructure), and reduced driving performance due to increased vehicle weight. Technology enabling to both supply power and perform charging while driving (dynamic charging) is being researched and developed as a means of addressing issues such as those above. If the amount of energy that can be supplied while driving does not at least exceed the driving energy of the traveling vehicle, then battery charging cannot be performed, and the vehicle would also need to continuously travel in a restricted lane in the manner of a train. In addition, dynamic charging of large vehicles traveling intermixed with regular vehicles calls for power supply on the level of 400 kW. Against this background, this study developed a high-power dynamic charging system that uses high power to charge a traveling EV, with the goal of realizing an unlimited vehicle range. This enables complete energy refueling (charging) of a traveling EV in a short time and allows drivers to freely drive over the intended route after charging. This report describes a system that enables dynamic charging with a charging power of 180 kW (DC 600 V, 300 A) while driving at a vehicle speed of 155 km/h, presents the results of running tests, and discusses future prospects.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-02-02
Training / Education
2017-09-14
Training / Education
2017-03-09
Training / Education
2015-04-06
Technical Paper / Journal Article
2004-11-16
Technical Paper / Journal Article
2004-11-16
Article
2016-02-02
Technical Paper / Journal Article
2004-11-16
Training / Education
2010-03-15