Comparison of the far-field aerodynamic wake development for three DrivAer Model configurations using a cost-effective RANS simulation.

Paper #:
  • 2017-01-1514

Published:
  • 2017-03-28
Abstract:
The flow field and body aerodynamic loads on the DrivAer reference model have been extensively investigated since its introduction in 2012. However, there is a relative lack of information relating to the models wake development resulting from the different rear-body configurations, particularly in the far-field. Given current interest in the aerodynamic interaction between two or more vehicles, the results from a preliminary CFD study are presented to address the development of the wake from the Fastback, Notchback, and Estateback DrivAer configurations. The primary focus is on the differences in the far-field wake and simulations are assessed in the range up to three vehicle lengths downstream, at a Reynolds number of 5.2 x 106 Wake development is modelled using the results from a Reynolds-Averaged Navier-Stokes (RANS) simulation within a computational mesh having nominally 7 x 106 cells. This approach was chosen to reflect a simple, cost-effective solution, using an industry-standard CFD solver. Each vehicle configuration has a smooth under-body, with exterior rear-view mirrors. The computational domain includes a moving ground simulation, and the simulation is for zero free stream yaw angle. A mesh sensitivity study was undertaken and the simulation validated against published experimental data for the body pressure distribution and measured velocity profiles in the near-wake region. Critical assessment of the results highlights the benefits of focussed mesh refinement and specific numerical strategies for optimum performance of the CFD solver. Comparison of the far-field aerodynamic wake for the three model configurations exhibits significant differences in both extent and structure within the wake region up to three vehicle lengths downstream of the base. The study is an element of a larger programme related to vehicle wake simulation and strategies are identified for possible wake modelling using simplified, computationally and experimentally efficient, shapes.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2010-10-06
Training / Education
2011-04-20
Standard
2013-03-11
Technical Paper / Journal Article
2007-11-28
Technical Paper / Journal Article
1995-08-01
Standard
1995-04-01
Technical Paper / Journal Article
2004-11-16
Technical Paper / Journal Article
2007-11-28
Article
2016-02-02
Article
2016-02-02