Browse Publications Technical Papers 2017-01-1533
2017-03-28

The Effects of Mass and Wheel Aerodynamics on Vehicle Fuel Economy 2017-01-1533

The introduction of Worldwide harmonized Light vehicles Test Procedures (WLTP) in Europe and increased Corporate Average Fuel Economy (CAFE) standards in the United States for fuel economy and emissions reductions are going to have a larger role in vehicle development. Two major ways to increase fuel economy and reduce emissions are by reducing mass and improving aerodynamics. In the wheel segment, these two possible means to improve fuel economy compete against each other. Most lightweight wheel designs are detrimental to aerodynamics and aerodynamic wheels are seen as unstylish and with a high mass penalty. One solution is through the use of composite wheel technology which replaces non-structural aluminum with lighter weight materials.
This study used SAE J2263 and SAE J2264 procedures to establish baseline fuel economy numbers and to evaluate various mass, inertial and aerodynamic differences between wheel concepts. Additional physical studies included steady state testing and real world road testing. Computational Fluid Dynamics (CFD) analysis was also performed to examine the link between the fuel economy differences and coefficient of drag (Cd).
It is concluded that the lightest weight wheel studied is not the most fuel efficient, nor is the heaviest. Additionally, applying a surface without a permanent attachment, such as a wheel cover, is also not the most fuel efficient. The wheel technology that provides the highest fuel efficiency and reduces emissions is one that focuses on improving aerodynamics through the use of permanently bonded aerodynamic surfaces and mass optimized structural backbones.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Thermal Analysis and Simulations for Optimizing HVAC Load on Heavy Trucks

2008-01-2657

View Details

TECHNICAL PAPER

Study of Air-Fuel Mixture Preparation in a Single Cylinder SI Engine

2010-32-0002

View Details

JOURNAL ARTICLE

Full Vehicle Thermal Prediction by Identification Approach from Test Results

2015-01-0441

View Details

X