Accuracy and Robustness of Parallel Vehicle Mass and Road Grade Estimation

Paper #:
  • 2017-01-1586

Published:
  • 2017-03-28
Pages:
9
Abstract:
A variety of vehicle controls, from active safety systems to power management algorithms, can greatly benefit from accurate, reliable, and robust real-time estimates of vehicle mass and road grade. This paper develops a parallel mass and grade (PMG) estimation scheme and presents the results of a study investigating its accuracy and robustness in the presence of various noise factors. An estimate of road grade is calculated by comparing the acceleration as measured by an on-board longitudinal accelerometer with that obtained by differentiation of the undriven wheel speeds. Mass is independently estimated by means of a longitudinal dynamics model and a recursive least squares (RLS) algorithm using the longitudinal accelerometer to isolate grade effects. To account for the influences of acceleration-induced vehicle pitching on PMG estimation accuracy, a correction factor is developed from controlled tests under a wide range of throttle levels. The estimation approach is applied to data collected while driving on public roads under a variety of driving conditions, replicating several noise factors associated with daily driving. Thresholds are developed to isolate driving events that are likely to result in quick and accurate mass estimates, and an averaging filter is then applied to these converged values. The algorithm is shown to rapidly deliver estimates within 3% of true vehicle mass.
Also in:
  • SAE International Journal of Vehicle Dynamics, Stability, and NVH - V126-10
  • SAE International Journal of Vehicle Dynamics, Stability, and NVH - V126-10EJ
Sector:
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2010-03-15
Standard
2012-03-15
Standard
2000-02-17
Technical Paper / Journal Article
2004-01-16
Training / Education
2017-09-14
Technical Paper / Journal Article
2004-03-08