Silicon carbide inverter for EV/HEV application featuring a low thermal resistance module and a noise reduction structure

Paper #:
  • 2017-01-1669

Published:
  • 2017-03-28
Abstract:
This paper presents the technologies incorporated in an electric vehicle (EV)/hybrid electric vehicle (HEV) inverter built with power semiconductors of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) instead of conventional silicon (Si) insulated gate bipolar transistors (IGBTs). A SiC inverter prototype of about 2.9L in size for driving an 80-kW motor was fabricated and evaluated on a motor test bench. The results showed a driving range improvement of about 4% in one EV driving mode compared with a conventional Si inverter. The two main technologies achieved with this SiC inverter prototype are described. The first one is a new direct-cooled power module with a thick copper (Cu) heat spreader located under the semiconductors that improves thermal resistance by 34% compared with a conventional direct-cooled power module. The SiC chip size is smaller than that of Si IGBTs, so this technology solves the problem that cooling characteristics typically worsen with a smaller chip cooling area. The second proposed technology is an inverter structure that reduces transmission of generated noise to the inverter case. It was confirmed that the noise level is the same, even though the SiC MOSFET switching speed is approximately twice that of conventional devices. This adopted structure makes it possible to take advantage of the inherent characteristic of SiC MOSFETs that their switching speed is faster than that of Si IGBTs. The fabrication and evaluation of this SiC inverter prototype have confirmed that these key technologies elicit the advantages of SiC MOSFETs and compensate their drawbacks, thereby reducing the size and improving the efficiency of the SiC inverter.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2004-11-16
Article
2016-02-02
Training / Education
1997-05-29
Article
2016-02-02
Technical Paper / Journal Article
2004-11-16
Article
2016-02-02
Technical Paper / Journal Article
2004-11-16