A Modular Designed Three-phase ~98%-Efficiency 5kW/L On-board Fast Charger for Electric Vehicles Using Paralleled E-mode GaN HEMTs

Paper #:
  • 2017-01-1697

Published:
  • 2017-03-28
Pages:
8
Abstract:
Most of the present electric vehicle (EV) on-board chargers utilize a conventional design, i.e., a boost-type Power Factor Correction (PFC) controller followed by an isolated DC/DC converter. Such design usually yields a ~94% wall-to-battery efficiency and 2~3kW/L power density at most, which makes a high-power charger, e.g., 20kW module difficult to fit in the vehicle. As described in this paper, first, an E-mode GaN HEMT based 7.2kW single-phase charger was built. Connecting three such modules to the three-phase grid allows a three-phase >20kW charger to be built, which compared to the conventional three-phase charger, saves the bulky DC-bus capacitor by using the indirect matrix converter topology. To push the efficiency and power density to the limit, comprehensive optimization is processed to optimize the single-phase module through incorporating the GaN HEMT switching performance and securing its zero-voltage switching. Close-loop control is implemented to minimize the output current ripple and balance the power among three single-phase modules. Simulation and experimental results validated that the proposed charger has an efficiency of ~98%, and a power density of ~5kW/L@20kW.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2013-03-25
Book
2013-12-16
Technical Paper / Journal Article
2011-08-30
Technical Paper / Journal Article
2013-03-25
Training / Education
2017-09-13