Browse Publications Technical Papers 2017-01-1707
2017-03-28

Retained Austenite Stability and Impact Performance of Advanced High Strength Steel at Reduced Temperatures 2017-01-1707

Retained austenite stability to both mechanically induced transformation and athermal transformation is of great importance to the fabrication and in-vehicle performance of automotive advanced high strength steels. Selected cold-rolled advanced high strength steels containing retained austenite with minimum tensile strengths of 980 MPa and 1180 MPa were pre-strained to pre-determined levels under uniaxial tension in the rolling direction and subsequently cooled to temperatures as low as 77 K. Room temperature uniaxial tensile results of pre-strained and cooled steels indicate that retained austenite is stable to athermal transformation to martensite at all tested temperatures and pre-strain levels. To evaluate the combined effects of temperature and pre-strain on impact behavior, stacked Charpy impact testing was conducted on the same 980 MPa minimum tensile strength steel following similar pre-straining in uniaxial tension. A reduction in absorbed energy was observed with decreasing temperature and increasing pre-strain, indicating that thermal effects on plasticity, not athermal transformation to martensite, predominantly account for the observed reductions in impact energy at reduced temperatures.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

A Comprehensive Plasticity and Fracture Model for Metal Sheets under Multi-axial Stress and Non-Linear Strain Path

2017-01-0315

View Details

TECHNICAL PAPER

Overcoming the Paradox of Strength and Ductility in a New Generation of AHSS

2016-01-0357

View Details

JOURNAL ARTICLE

Ductile Fracture from Spot Weld and Flange Edge in Advanced High Strength Steels

2017-01-0365

View Details

X