Enhanced Low-Order Model with Radiation for Total Temperature Probe Analysis and Design

Paper #:
  • 2017-01-2047

Published:
  • 2017-09-19
Abstract:
Analysis and design of total temperature probes for accurate measurements in hot, high-speed flows remains a topic of great interest in aerospace propulsion and a number of other engineering areas. Despite an extensive prior literature on the subject, prediction of error sources from convection, conduction and radiation is still an area of great concern. For hot-flow conditions, the probe is normally mounted in a cooled support, leading to substantial axial conduction along the length of the probe. Also, radiation plays a very important role in most hot, high-speed conditions. One can apply detailed computational methods for simultaneous convection, conduction and radiation heat transfer, but such approaches are not suitable for rapid, routine analysis and design studies. So, there is still a place for approximate methods, and that is the subject of this paper. Of course for an approximate method to be useful, it must be convenient and rapid to use, it must be robust and, most importantly, it must include models of the key phenomena with an appropriate level of fidelity. Here, we present an enhanced, low-order model that includes conduction with variable thermal conductivity, convection with varying convection coefficient and radiation, all implemented in a convenient MATLAB code.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Standard
1991-05-23
Technical Paper / Journal Article
2011-04-12
Book
2003-12-17
Training / Education
2017-12-07
Technical Paper / Journal Article
2011-04-12
Training / Education
2017-06-15