Browse Publications Technical Papers 2017-01-2244
2017-10-08

Ignition Improvement for Ultra-Lean Dilute Gasoline Combustion 2017-01-2244

In this work, a spatially distributed spark ignition strategy was employed to improve the ignition process of well-mixed ultra-lean dilute gasoline combustion in a high compression ratio (13.1:1) single cylinder engine at partial loads. The ignition energy was distributed in the perimeter of a 3-pole igniter. It was identified that on the basis of similar total spark energy, the 3-pole ignition mode can significantly shorten the early flame kernel development period and reduce the cyclic variation of combustion phasing, for the spark timing sweep tests at λ 1.5. The effect of ignition energy level on lean-burn operation was investigated at λ 1.6. Within a relatively low ignition energy range, i.e. below 46 mJ per pole, the increase in ignition energy via ether 1 pole or 3 pole can improve the controllability over combustion phasing and reduce the variability of lean burn combustion. Higher ignition energy was required in order to enable ultra-lean engine operation with λ above 1.6. With the highest ignition energy achievable for the tested ignition system, the stable operable lean limits at a nominal engine load of 3 bar indicated mean effective pressure (IMEP) was extended by using 3-pole ignition, which consequently increased the thermal efficiency.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Combustion Optimization in a Hydrogen-Enhanced Lean-Burn SI Engine

2005-01-0251

View Details

TECHNICAL PAPER

Investigate Chemical Effects of Pre-Chamber Combustion Products on Main Chamber Ignition Performance under an Ultra-Lean Condition

2020-01-2001

View Details

JOURNAL ARTICLE

A Cylinder Pressure-Based Knock Detection Method for Pre-chamber Ignition Gasoline Engine

03-14-03-0024

View Details

X