Combustion Optimization of a Multi-Cylinder CI Engine Running with a Low RON Gasoline Fuel Considering Different Air Loop and After-Treatment Configurations

Paper #:
  • 2017-01-2264

Published:
  • 2017-10-08
Abstract:
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in compression ignition engines. In this context, low RON gasoline, a refinery stream derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. In addition, thanks to its higher H/C ratio and energy content compared to diesel, CO2 benefits are also expected when used in such engines. In previous studies, different Cetane Number (CN) fuels have been evaluated and a CN 35 fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern and nozzle design have been performed on a single cylinder compression-ignition engine. The purpose of this paper is to assess different airpath and after treatment system (ATS) definitions to maximize the potential of a low-RON gasoline fuel running on a multi-cylinder compression ignition engine. Low pressure (LP) and High Pressure (HP) EGR were evaluated to fulfill Euro 6d standard with and without NOx after-treatment system. The CO2 benefits were estimated thanks to a specific Design of Experiment (DoE) methodology developed by IFPEN. The results were computed through the combination of 16 hot and cold operating points whereas 0D models were used to generate the ATS efficiencies. Meet the Euro 6 NOx regulation on WLTC without NOx ATS is possible with a complex LP+HP EGR airpath. Nevertheless, a greater CO2 potential was identified with HP EGR system combined with SCR. Once put into practice, Euro 6 regulation was met with a reduction of almost 7% of CO2 on WLTC. Noise levels were comparable to a Euro 5 diesel reference engine.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-11-15
Training / Education
2017-10-03
Technical Paper / Journal Article
2010-10-25
Training / Education
1999-09-27
Training / Education
2003-01-22