# A Mathematical Model for the Vapour Composition and Flammability of Gasoline - Diesel Mixtures in a Fuel Tank

Paper #:
• ## 2017-01-2407

Published:
• 2017-10-08
Citation:
Bardon, M., Pucher, G., Gardiner, D., Ariztegui, J. et al., "A Mathematical Model for the Vapour Composition and Flammability of Gasoline - Diesel Mixtures in a Fuel Tank," SAE Technical Paper 2017-01-2407, 2017.
Author(s):
Affiliated:
Pages:
14
Abstract:
Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this, but a practical concern is the flammability of the headspace vapours in the vehicle fuel tank. Gasoline is much more volatile than diesel so, at most ambient temperatures, the headspace vapours in the tank are too rich to burn. A gasoline/diesel mixture in a fuel tank therefore can result in a flammable headspace, particularly at cold ambient temperatures. A mathematical model is presented that predicts the flammability of the headspace vapours in a tank containing mixtures of gasoline and diesel fuel. Fourteen hydrocarbons and ethanol represent the volatile components. Heavier components are treated as non-volatile diluents in the liquid phase. The non-ideality of the blends of hydrocarbons and ethanol is accounted for using activity coefficients. Predictions for dry vapour pressure equivalent (DVPE), vapour phase composition and flammability are compared to experimental data for 12 mixtures of 4 base gasolines, some containing alcohol, a single diesel fuel and various quantities of additional ethanol. A 5% fuel tank fill level and a total tank pressure of 1 atmosphere were used. The model predicted DVPE for both base gasolines and dieseline blends that were within 2-4% of measured values. Predicted upper temperature limits of flammability were consistently 5-10°C higher than measured in this apparatus. The discrepancy was attributed mainly to the impact of downward flame propagation in this apparatus, compared to upward propagation used in flammability data found in the literature and used in the model.
Sector:
Topic:
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Select
Price
List
\$27.00
Mail
\$27.00
Members save up to 40% off list price.
Special Offer
Share
Page URL

### Related Items

Article
2017-03-05
Technical Paper / Journal Article
2010-10-25
Book
2004-01-01
Article
2017-03-13
Article
2017-03-06
Article
2017-03-01
Technical Paper / Journal Article
2010-10-25
Article
2017-03-06
Training / Education
1999-09-27
Technical Paper / Journal Article
2010-10-25
Technical Paper / Journal Article
2010-10-25
Event
2018-03-05
Standard
2013-05-28
Technical Paper / Journal Article
2010-10-25
Technical Paper / Journal Article
2010-10-25
Technical Paper / Journal Article
2010-10-25
Standard
2011-02-04
Standard
1992-05-01
Book
2011-05-26
Article
2017-03-13
Article
2017-02-17
Technical Paper / Journal Article
2010-10-25
Technical Paper / Journal Article
2010-10-25
Book
2009-10-01
Technical Paper / Journal Article
2010-10-25