Browse Publications Technical Papers 2017-01-2519
2017-09-17

Optimal Design of EPB Caliper Using DOE 2017-01-2519

An Electrical Parking Brake (EPB) system is a device that operates to park the vehicle automatically with the push of a button instead of using conventional hand or foot levers which in some ways makes it the first by wire type of brake system. As such, it is being considered in some vehicle architectures as an automatic redundant backup for vacuum-less brake systems or autonomous cars.
The EPB system is generally divided into cable puller and motor on caliper (MOC) types. Recently, the MOC type EPB is being more widely applied in the global market due to product competitiveness and cost effectiveness. The MOC type EPB is composed of the caliper body, torque member, pad assembly, nut assembly and actuator. Among them, the caliper body and torque member play a main role in the robustness of the EPB system and occupy more than 80% of the total weight. Therefore, optimal design of the caliper body and torque member to maximize stiffness while minimizing weight is systematically important in the design of an EPB system.
In this paper, stiffness and weight optimization was carried out for an EPB caliper body and torque member starting out from basic shapes. The objective functions for the EPB caliper body and torque member were designated as its weight and stiffness. Also EPB specific characteristics such actuator weight, and mounting requirements were considered. Main dimensions considered critical from the existing design were taken as design variables. Design of experiments (DOE) procedure was used to set the levels of design variables and the effectiveness of each level was checked using CAE. Through discrete results, we were able to find continuous approximation models in a specified range. Based on the regressive model, design variables that could minimize weight under constant stiffness conditions were adopted. From this, it was possible to obtain an optimal design of an EPB caliper body and torque member.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
STANDARD

Verification of Brake Rotor and Drum Modal Frequencies

J2933_202209

View Details

STANDARD

Brake Rotor Thermal Cracking Procedure for Vehicles Below 4 540 kg GVWR

J2928_201805

View Details

STANDARD

FMVSS Inertia Dynamometer Test Procedure for Vehicles Below 4540 kg GVWR

J2784_202101

View Details

X