Estimation of Brake Friction Coefficient for Blending Function of Base Braking Control

Paper #:
  • 2017-01-2520

  • 2017-09-17
The brake architecture of hybrid and full electric vehicle includes the distinctive function of brake blending. Known approaches draw upon the maximum energy recuperation strategy and neglect the operation mode of friction brakes. Within this framework, an efficient control of the blending functions is demanded to compensate external disturbances induced by unpredictable variations of the pad disc friction coefficient. In addition, the control demand distribution between the conventional frictional brake system and the electric motors can incur failures that compromise the frictional braking performance and safety. However, deviation of friction coefficient value given in controller from actual one can induce undesirable deterioration of brake control functions. The main objective of the presented study is to propose a method to compensate disturbance induced by the variation of brake linings friction coefficient through modifications of the brake torque demand for the enhancement of both brake performance and active safety. The achievement of a compensation mechanism requires the estimation of relevant vehicle state. Hereunto, a novel technique based on a linear Kalman observer is proposed for the online estimation of the brakes friction coefficient by relying upon the wheel speed sensors and inertia measurement unit (IMU). Such a tool enables a more efficient use of the frictional brakes aimed at minimizing losses of friction coefficient by keeping them in the optimal pressure and temperature range. A simulation analysis will be carried out using the full vehicle simulator of the proprietary software IPG Carmaker to test the functionality of the developed estimator in real-time mode. Experimental results from brake dynamometric test rig will be considered in the vehicle dynamics simulation software to reproduce the real behaviour of brake linings friction coefficient. The resulting improvements in brake control functions will be analysed against longitudinal base braking cases involving blending functions also in presence of failure of the electric motors.
SAE MOBILUS Subscriber? You may already have access.
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 40% off list price.
HTML for Linking to Page
Page URL

Related Items

Training / Education
Training / Education