Fundamental Understanding of Antiwear Mechanisms in Real-World Applications: Part 2

Paper #:
  • 2017-01-9382

Published:
  • 2017-08-25
DOI:
  • 10.4271/2017-01-9382
Citation:
Smith, O., Nguyen, N., Delbridge, E., Burrington, J. et al., "Fundamental Understanding of Antiwear Mechanisms in Real-World Applications: Part 2," SAE Int. J. Fuels Lubr. 10(3):2017.
Pages:
6
Abstract:
The global commitment to reduce CO2 emissions drives the automotive industry to create ever more advanced chemical and engineering systems. Better vehicle fuel efficiency is demanded which forces the rapid evolution of the internal combustion engine and its system components. Advancing engine and emission system technology places increasingly complex demands on the lubricant. Additive system development is required to formulate products capable of surpassing these demands and enabling further reductions in greenhouse gas emissions. This paper reports a novel method of generating fundamental structure-performance knowledge with real-world meaning. Traditional antiwear molecule performance mechanisms are explored and compared with the next generation of surface active additive system (SAAS) formulated with only Nitrogen, Oxygen, Carbon and Hydrogen (NOCH). Results of experiments run with the advanced antiwear NOCH SAAS show significant improvements over traditional fully-formulated lubricants through a mechanism that deviates from that of conventional antiwear molecules.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2013-04-08
Standard
2010-03-02
Standard
1966-08-01
Technical Paper / Journal Article
2013-04-08