Browse Publications Technical Papers 2017-24-0010
2017-09-04

A Methodology for Modeling the Cat-Heating Transient Phase in a Turbocharged Direct Injection Spark Ignition Engine 2017-24-0010

This paper presents the modeling of the transient phase of catalyst heating on a high-performance turbocharged spark ignition engine with the aim to accurately predict the exhaust thermal energy available at the catalyst inlet and to provide a “virtual test rig” to assess different design and calibration options.
The entire transient phase, starting from the engine cranking until the catalyst warm-up is completed, was taken into account in the simulation, and the model was validated using a wide data-set of experimental tests.
The first step of the modeling activity was the combustion analysis during the transient phase: the burn rate was evaluated on the basis of experimental in-cylinder pressure data, considering both cycle-to-cycle and cylinder-to-cylinder variations.
Then, as far as the exhaust temperatures are concerned, a detailed model of the thermocouples was implemented to replicate the physical behavior of the sensors during the warm-up and to compare the simulated temperatures with the measured ones.
Finally, a complete analysis of the energy balance during the transient was carried out: the thermal power available to the catalyst inlet was obtained from a complete analysis of power losses (i.e. friction and pumping losses, in-cylinder heat transfer, engine block and engine coolant heating, exhaust manifold heat transfer, etc.).
In conclusion, the proposed methodology allows to reliably simulate in details the Cat-Heating transient, showing a valuable potential in driving the main design and calibration choices during the engine development process.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Steady-State Local Heat Flux Measurements in a Straight Pipe Extension of an Exhaust Port of a Spark Ignition Engine

2007-01-3990

View Details

TECHNICAL PAPER

Divided Exhaust Period - A Gas Exchange System for Turbocharged SI Engines

2005-01-1150

View Details

TECHNICAL PAPER

A Model for Application of Chen's Boiling Correlation to a Standard Engine Cooling System

2008-01-1817

View Details

X