Improvement of the Control-Oriented Model for the Engine-Out NO X Estimation Based on In-Cylinder Pressure Measurement

Paper #:
  • 2017-24-0130

Published:
  • 2017-09-04
Citation:
Carlucci, A., Benegiamo, M., Camporeale, S., and Ingrosso, D., "Improvement of the Control-Oriented Model for the Engine-Out NOX Estimation Based on In-Cylinder Pressure Measurement," SAE Technical Paper 2017-24-0130, 2017.
Pages:
8
Abstract:
1Nowadays, In-Cylinder Pressure Sensors (ICPS) have become a mainstream technology that promises to change the way the engine control is performed. Among all the possible applications, the prediction of raw (engine-out) NOX emissions would allow to eliminate the NOX sensor currently used to manage the after-treatment systems. In the current study, a semi-physical model already existing in literature for the prediction of engine-out nitric oxide emissions based on in-cylinder pressure measurement has been improved; in particular, the main focus has been to improve nitric oxide prediction accuracy when injection timing is varied. The main modification introduced in the model lies in taking into account the turbulence induced by fuel spray and enhanced by in-cylinder bulk motion. The effectiveness of the new model has been tested with data acquired during an extensive experimental campaign during which a 2.0l 4 cylinders Diesel engine, whose after-treatment system allows to fulfil the EU6 legislation limits, has been operated on the overall engine map. It is shown that, comparing measured and estimated NOX on a wide range of engine settings, the improved model is quite effective in capturing the effect of injection timing on engine-out NOX emissions: the average error between measured and estimated NOX is reduced of about 10% while the correlation coefficient is increased from 0.86 to 0.97.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2010-03-15
Technical Paper / Journal Article
2010-10-25
Book
2015-06-01
Training / Education
2018-02-05
Technical Paper / Journal Article
2010-10-19
Training / Education
2018-02-12
Training / Education
2017-06-15