Further Analysis of the Effect of Oxygen Concentration on the Thermal Aging of Automotive Catalysts

Paper #:
  • 2017-24-0136

  • 2017-09-04
With emission legislations becoming ever more stringent there is an increased pressure on the after treatment systems and more specifically the three-way catalysts. With more recent developments in emission legislations, there is requirement for more complex after-treatment systems and understanding of the ageing process. With future legislation introducing independent inspection of emissions at any time under real world driving conditions throughout a vehicle life cycle this is going to increase the focus on understanding catalyst behaviour during any likely conditions throughout its lifetime and not just at the beginning and end. In recent years it has become a popular approach to use accelerated aging of the automotive catalysts for the development of new catalytic formulations and for homologation of new vehicle emissions. To accelerate the catalyst ageing, the samples experience high temperatures of 800°C and higher on a recognised ageing cycle for a specific time which can be related back to vehicle mileage. As an alternative to using large gasoline engines, alternative bench-aging techniques are becoming more frequently used, including synthetic gas bench reactors. Bench reactors tend to offer more flexibility, greater repeatability and opportunity for more precise control over variables providing greater development possibilities. Whilst the body of understanding on catalyst deactivation and in particular catalyst ageing is growing, there are still significant gaps in understanding, particularly how real world variations in temperature, flow rate and gas concentrations affect catalyst behaviour. Under normal driving conditions the catalyst can experience varying oxygen concentrations, such as under heavy acceleration or cruising down a hill will show a variation in oxygen from the engine emissions. The effect of varying oxygen concentrations has on the rate of aging is not fully understood hence the total deactivation and efficiencies are not known throughout the catalyst lifetime. The current algorithms do not fully account for these variations in oxygen concentrations. This paper presents a continuation of previous work into the investigation of the effect of varying oxygen concentration on the rate of catalyst aging. A number of commercially available palladium loaded three-way catalysts were aged over a precise temperature cycle at varying oxygen concentrations for different ageing times related back to a mileage. The results were analyzed in detail and compared with predictions based on the standard ageing algorithm and with others proposed in literature.
SAE MOBILUS Subscriber? You may already have access.
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 40% off list price.
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
Training / Education
Training / Education
Technical Paper / Journal Article