Sine Wave Pulse Width Modulation Study for Improving Vehicle Lighting Control

Paper #:
  • 2018-01-0001

Published:
  • 2018-04-03
Abstract:
Vehicle lighting has become more demanding with different load requirements, strict Electromagnetic Compatibility (EMC) requirements, accuracy requirements, and power consumption requirements. These requirements are all under the constraint of ever shrinking PCB’s driving up the cost of PCB real estate. Pulse width modulation (PWM) is used to control the interior and exterior lighting in vehicles and meet all these requirements. One or more electronic control units in the body domain of a vehicle contain a number of integrated circuits that drive loads using PWM signals. In addition to driving loads, PWM signals are used for things such as dimming and diagnostic functions. In current technology the PWM signal is usually composed of a trapezoidal wave which controls bulb or light emitting diodes (LED) loads in a vehicle. The trapezoidal wave may not be the most efficient way to meet requirements in the automotive industry due to its sharp rising edges so different methods have been developed to improve functionality and reduce cost. Using PWM with sine wave control could be an improvement over the current technology. This study looks at two integrated circuits that use each control method, the trapezoidal wave and the sine wave. Both control methods are studied with the same PCB layout and environmental conditions then compared through testing such as radiated emissions testing and thermal testing. The comparison is used to determine which method is more beneficial for use in controlling automotive lighting. Other methods in recent literature are also reviewed along with future outlooks on controlling lighting loads in the automotive industry.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
1990-02-01
Technical Paper / Journal Article
1981-09-01
Technical Paper / Journal Article
1990-02-01
Training / Education
2005-11-15
Technical Paper / Journal Article
1990-02-01