Engine Coolant Jet Pump Design for Optimal Pumped Flow Performance

Paper #:
  • 2018-01-0082

Published:
  • 2018-04-03
Author(s):
Affiliated:
Abstract:
Jet pumps are viable options of pumping fluid if a pressurized flow stream is available as an energy source. For a Ford engine cooling circuit an effort was undertaken to improve an existing (conventional) jet pump design which could not meet more demanding pumped flow requirements. Various virtual jet pump designs were analyzed using 3D CFD where the pumped flowrate was used to evaluate the effectiveness of the design. It was found that the existing design could not be modified to provide the needed pump flow rate. It was decided to forgo the current design and develop a completely new configuration. This effort produced many design variances which were evaluated and resulted in a final design that closely reached the pumped flow rate requirements. As new designs were evaluated through the process, particular geometrical aspects were observed which improved the pumped flow performance. It was observed, in particular, the pumped flow path from the inlet to the mixing area with the primary flow is very critical for the pumped flowrate performance. As the jet pump housing configuration requires the pumped flow inlet to be perpendicular to the primary flow path, the pumped flow path was a major consideration in the design. It was observed that reducing the flow restriction of the pumped flow path did not significantly improve performance, but the pumped flow swirl/vorticity characteristic flow was the main detractor. The paper would identify the critical design features which reduce swirl/vortices and leading to optimize the pumped flow rate.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2007-03-01
Event
2018-04-10
Technical Paper / Journal Article
2011-05-17
Training / Education
2005-11-15