Experimental testing of a low temperature regenerating catalytic DPF at the exhaust of a light-duty Diesel engine

Paper #:
  • 2018-01-0351

  • 2018-04-03
The wall-flow Diesel Particulate Filter (DPF) is currently the most common after-treatment system used to meet the particulate emission limits imposed by government regulations. Today’s technology shows the best balance between filtration efficiency and back-pressure in the engine exhaust pipe. Conventional filters consist in alternately plugged parallel square channels, so that the exhaust gases flow through the porous inner walls leading to particles trapping. During the accumulation phase the pressure drop across the filter increases, thus requiring periodic regeneration of the DPF through after and post fuel injection strategies. This work deals with the experimental testing of a catalytic silicon carbide (SiC) wall flow DPFs with CuFe2O4 loading. The filter was built following an optimized procedure based on a preliminary controlled chemical erosion of the SiC porous structure. Such method allows increasing the initial average pore diameter of the bare filters and consequently the deposition of higher catalyst load without affecting the pressure drop. The experimental tests were perfomed at the exhaust of a EURO V lighty duty Diesel engine, operating at different speed/load conditions. The results exhibit a filtration efficiency higher than 96%, throughout the soot accumulation phase, and a threshold catalyst temperature during the regeneration lower than 450°C, with a duration of about 15 minutes. These values, if compared with those obtained by the uncatalysed commercial filter (600°C and 25 minutes), evidence the possibility to achieve significant fuel saving along with shorter and thus flexible regeneration manouvres/transients.
SAE MOBILUS Subscriber? You may already have access.
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 36% off list price.
HTML for Linking to Page
Page URL

Related Items

Training / Education
Training / Education
Technical Paper / Journal Article