Accuracy assessment of three-dimensional vehicle edge features generated with aid of photogrammetric epipolar lines

Paper #:
  • 2018-01-0530

Published:
  • 2018-04-03
Abstract:
Photogrammetry is widely used in the automotive and accident reconstruction communities to extract three-dimensional information from photographs. Prior studies in the literature have demonstrated the accuracy of such methods when photographs contain easily-identifiable, distinct points; however, it is often desirable to determine measurements for locations where a seam, edge, or contour line is available. To exploit such details, an analyst can project an epipolar line onto a camera plane that constrains the search for the corresponding 3D point to a straight line. Thus, the goal of this study was to evaluate the modeling accuracy for cases in which an analyst uses epipolar lines in a workflow. To do so, artificial images were generated using an ideal computer-generated camera within a computer-assisted drawing environment to allow for a known reference model to compare with results produced using photogrammetry. A systematic study was undertaken by modeling two-dimensional curves on a plane, three-dimensional curves on a curved surface, and then hood and bumper edges on a vehicle model. Each model was assessed for accuracy, and the sensitivity of the accuracy to camera placement was carefully examined and explained. Finally, the procedures were applied to an actual vehicle, for which the results were compared to a 3D laser scan of the vehicle. In conclusion, the average residual error between a photogrammetry model created with the aid of epipolar lines and 3D scanned points for a three-dimensional vehicle edge feature was 1.69 mm (SD = 0.55 mm).
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2011-05-17
Training / Education
2009-12-15
Training / Education
2007-03-01