A fault-tolerant control method for 4WID/4WIS electric vehicles based on reconfigurable control allocation

Paper #:
  • 2018-01-0560

  • 2018-04-03
This paper presents a fault-tolerant control(FTC) method for four-wheel independently driven and steered(4WID/4WIS) electric vehicles based on reconfigurable control allocation to increase the flexibility for vehicle control and improve the safety of vehicle after the steering motor failures. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle steering condition, detects and diagnoses actuator failures; 2) a upper controller that computes the generalized forces/moments to track the desired vehicle motion and trajectory using model predictive control method; 3) a reconfigurable control allocator that optimally distributes the generalized forces/moments to four wheels. The FTC approach is based on the reconfigurable control allocation which reallocates the generalized forces/moments among healthy steering actuators and driving motors once the actuator failures is detected. If one of the steering actuators fails (stuck steering actuators angle fault), the FDD module will diagnose the actuator failures by the steering wheel angle sensors. Then the reconfigurable control allocator accommodates faulty driving motors and reconfigures the control allocation law of the healthy motors to achieve the desired vehicle motion and minimize the deviation from the desired trajectory to the utmost extent. Simulations using a high-fidelity, full-vehicle model have been conducted to verify the proposed algorithm. It has been shown from the simulations that the proposed fault-tolerant control (FTC) method can make the vehicle track the desired motion and trajectory when the steering actuator failures occur so that it can improve the safety and control of vehicle.
SAE MOBILUS Subscriber? You may already have access.
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Members save up to 36% off list price.
HTML for Linking to Page
Page URL

Related Items

Training / Education
Training / Education