Browse Publications Technical Papers 2018-01-0705
2018-04-03

Modelling the Effect of Spray Breakup, Coalescence, and Evaporation on Vehicle Surface Contamination Dynamics 2018-01-0705

Vehicle surface contamination is an important design consideration as it affects drivers’ vision and the performance of onboard camera and sensor systems. Previous work has shown that eddy-resolving methods are able to accurately capture the flow field and particle transport, leading to good agreement for vehicle soiling with experiments. What is less clear is whether the secondary breakup, coalescence, and evaporation of liquid particles play an important role in spray dynamics. The work reported here attempts to answer this and also give an idea of the computational cost associated with these extra physics models. A quarter-scale generic Sports Utility Vehicle (SUV) model is used as a test case in which the continuous phase is solved using the Spalart-Allmaras Improved Delayed Detached Eddy Simulation (IDDES) model. The dispersed phase is computed concurrently with the continuous phase using the Lagrangian approach. The Taylor Analogy Breakup (TAB) secondary breakup and the stochastic O’Rourke coalescence models are used. The spray’s rate of evaporation is calculated based on the relative humidity encountered on a typical October day in Britain. The secondary breakup model is found to be redundant, possibly due to the properties of spray. The coalescence model predicts high coalescence of particles close to the source and improves agreement with experiment, although at a high computational cost. Including evaporation removes small particles from the simulation and reduces overall contamination. When used along the coalescence model, evaporation is found to be negligible as it does not influence large particles to the same extent as it affects small particles. This suggests that droplet physics models need to be considered together as they can have a strong effect on each other as well as vehicle soiling. Here, we show that coalescence can be accounted for by using the time-averaged spray, obtained outside the region of high coalescence. This gives a very good agreement with experiment.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Coupled Level-Set Volume of Fluid Simulations of Water Flowing Over a Simplified Drainage Channel With and Without Air Coflow

2017-01-1552

View Details

TECHNICAL PAPER

Experimental and Numerical Investigations on Time-Resolved Flow Field Data of a Full-Scale Open-Jet Automotive Wind Tunnel

2021-01-0939

View Details

TECHNICAL PAPER

Multi-Objective Aerodynamic Optimization of Vehicle Shape Using Adjoint Approach Based on Steady-State and Transient Flow Solutions

2021-01-0945

View Details

X