Dynamic Characteristic Analysis of an Ambulance with Hydraulically Interconnected Suspension System

Paper #:
  • 2018-01-0815

Published:
  • 2018-04-03
Abstract:
The vibration and instability experienced in an ambulance can lead to secondary injury to a patient and discourage a paramedic from emergency care. This paper presents a hydraulically interconnected suspension (HIS) system which can achieve enhanced cooperative control of roll, pitch and bounce motion modes to improve the ambulance vehicle’s ride comfort and handling performance. A lumped-mass model integrated with a mechanical and hydraulic coupled system is developed by using the free-body diagram and transfer matrix methods. The mechanical–fluid boundary condition in the double-acting cylinders is modelled as an external force on the mechanical system and a moving boundary on the fluid system. A special modal analysis method is employed to reveal the vibration characteristics of the ambulance with the HIS. A series of frequency analyses, including free vibration with identified eigenvalues and eigenvectors, vibration transmissibility and force vibration with stochastic road inputs, are performed to evaluate the system performence between the ambulance with the conventional suspension and the ones with the proposed HIS. These results show that the proposed HIS system can reduce the roll and pitch motion of sprung mass to improve the handling stability, and meanwhile provide softer bounce stiffness to maintain the ride comfort. Furthermore, the vibration decay rate of sprung mass is significantly increased.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2009-12-15
Event
2018-04-10
Training / Education
2007-03-01
Technical Paper / Journal Article
2011-05-17
Article
2017-07-26