Lateral dynamics and suspension tuning for a two-axle bus fitted with roll-resistent hydraulically interconnected suspensions

Paper #:
  • 2018-01-0831

Published:
  • 2018-04-03
Abstract:
In this paper, a new roll-plane hydraulically interconnected suspension (HIS) system is proposed to enhance the roll and lateral dynamics of a two-axle bus. It is well-known that the suspension tuning is of great importance in the design process of classical passenger car and has also been explored in a number of studies, while only minimal efforts have been made for suspension tuning for the newly proposed HIS system. This study aims to explore lateral dynamics and suspension tunings of a two-axle bus with HIS system, which could also provide valuable information for roll dynamics analysis. Based on a ten-DOFs lumped-mass full-car model of a bus either integrating transient mechanical-hydraulic model for HIS or keep the conventional suspension components, three newly promoted parameters of HIS system are defined and analyzed–namely the total roll stiffness (TRS), roll stiffness distribution ratio (RSDR) and roll-plane damping (RPD). Dynamic responses of the two kinds of vehicle model with the same fishhook maneuver are obtained under a wide range of combination for the suspension parameters above. The responses are evaluated in terms of performance measures related to roll and yaw rate, trajectory, sideslip angle, lateral and longitudinal velocity of the vehicle. Fundamental relationships between the vehicle responses and the proposed suspension parameters (TTS, RSDR, and RPD) are established, based on which some basic suspension tuning rules for buses with HIS system are also proposed.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Attention: This item is not yet published. Pre-Order to be notified, via email, when it becomes available.
Select
Price
List
Download
$22.00
Mail
$22.00
Members save up to 36% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2011-05-17
Technical Paper / Journal Article
2011-05-17
Training / Education
2005-11-15
Article
2017-07-26