1960-01-01

GENERALIZED THERMODYNAMIC ANALYSIS OF STIRLING ENGINES 600222

Schmidt's classical thermodynamic analysis of closed, regenerative gas cycles assumed isothermal phases, which implies infinite heat transfer through cylinder walls on zero speed. The more general case of limited heat transfer coefficient and variable exposed surface area for the cylinder is treated in this paper and expressions for the cyclic pressure and temperature variations of the working fluid are derived. These are based on a pair of simultaneous first-order differential equations which do not have closed solutions, so that stepwise numerical integration methods must be used. A complete heat balance is obtained so that actual efficiencies or coefficients of performance can be calculated instead of assuming them to be equal to the ideal values of a Carnot cycle, as was general practice up to now. Numerical examples covering the whole range of operation for a typical machine between adiabatic conditions (zero heat transfer) and isothermal operation (infinite heat transfer) are included.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

OPTIMIZATION OF PHASE ANGLE AND VOLUME RATIO FOR STIRLING ENGINES

600223

View Details

TECHNICAL PAPER

Double-Acting Stirling Engine with the Inner Heat Exchangers

929398

View Details

TECHNICAL PAPER

Neural Cylinder Model and Its Transient Results

2003-01-3232

View Details

X