1986-09-01

A Two-Stage Heat-Release Model for Diesel Engines 861272

A two-stage heat-release model was developed and applied to both a divided-chamber and an open-chamber diesel engine to determine the fuel burning rates and product temperatures from measured cylinder pressure-time profiles. Measured NO emission levels for several engine operating conditions were used to select the equivalence ratios of the two stages. Combustion in the first stage was taken to occur at a stoichiometric air-fuel ratio, while second-stage combustion was considered to occur at an equivalence ratio below the cylinder-averaged equivalence ratio. An empirical fit for the equivalence ratio of the second stage was determined. Good agreement between the results of this model and the corresponding single-stage model was obtained for heat-release and heat-transfer histories. The computed combustion temperatures for the rich stage were found to be consistently higher (7 to 22% on an absolute scale) than published flame-temperature measurements. Radiation heat-transfer calculations showed that soot radiation accounted for nearly all radiation, and the contribution of radiation heat transfer to the total heat transfer was found to be between 22 and 38%.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A New Instrument For Radiation Flux Measurement in Diesel Engines

891901

View Details

TECHNICAL PAPER

A Theoretical Study of the Potential of NOx Reduction by Fuel Rate Shaping in a DI Diesel Engine

2000-01-2935

View Details

TECHNICAL PAPER

Techniques for CO2 Emission Reduction over a WLTC. A Numerical Comparison of Increased Compression Ratio, Cooled EGR and Water Injection

2018-37-0008

View Details

X