Neural Network Approaches for Lateral Control of Autonomous Highway Vehicles

Paper #:
  • 912871

Published:
  • 1991-10-01
Citation:
Kornhauser, A., "Neural Network Approaches for Lateral Control of Autonomous Highway Vehicles," SAE Technical Paper 912871, 1991, https://doi.org/10.4271/912871.
Author(s):
Pages:
9
Abstract:
The research reported in this paper focuses on the automated steering aspects of intelligent highway vehicles. Proposed is a machine vision system for capturing driver views of the on-coming highway environment. The objective is to investigate various designs of artificial neural networks for processing the resulting images and generating acceptable steering commands for the vehicle. The research effort has involved the construction of a computer graphical simulation system, called the Road Machine, which is used as the experimental environment for analyzing, through simulation, alternative neural network approaches for controlling autonomous highway vehicles. The Road Machine serves as both the training environment and the experimental testing environment for the autonomous highway vehicle. It is composed of five (5) major modules: Highway design, Driver view simulation, Image processing, Neural network design and training, and Autonomous driving simulation. Two types of neural network control structures are under active research, Back-propagation and Adaptive Resonance. The Road Machine is written in C and operates on Silicon Graphics workstations using Unix and the SGI graphics language.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2010-03-15
Training / Education
2018-02-12