RTG Impact Response to Hard Landing During Mars Environmental Survey (MESUR) Mission

Paper #:
  • 929480

Published:
  • 1992-08-03
Citation:
Schock, A. and Mukunda, M., "RTG Impact Response to Hard Landing During Mars Environmental Survey (MESUR) Mission," SAE Technical Paper 929480, 1992, https://doi.org/10.4271/929480.
Pages:
8
Abstract:
The National Aeronautics and Space Administration (NASA) is studying a seven-year robotic mission (MESUR, Mars Environmental Survey) for the seismic, meteorological, and geochemical exploration of the Martian surface by means of a network of - 16 small, inexpensive landers spread from pole to pole. To permit operation at high Martian latitudes, NASA has tentatively decided to power the landers with small RTGs (Radioisotope Thermoelectric Generators). To support the NASA mission study, the Department of Energy's Office of Special Applications commissioned Fairchild to perform specialized RTG design studies. Those studies indicated that the cost and complexity of the mission could be significantly reduced if the RTGs had sufficient impact resistance to survive ground impact of the landers without retrorockets. Fairchild designs of RTGs configured for high impact resistance were reported previously. Since then, the size, configuration, and impact velocity of the landers and the power level and integration mode of the RTGs have changed substantially, and the previous impact analysis has been updated accordingly. The analytical results, reported here, indicate that a lander by itself experiences much higher g-loads than the lander with an integral penetrator; but that minor modifications of the shape of the lander can very substantially reduce the maximum g-load during landing, thus eliminating the need for retrorockets for RTG survival.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2012-10-02
Technical Paper / Journal Article
1999-10-19
Standard
2017-11-30
Book
2004-01-01
Technical Paper / Journal Article
1999-10-19
Technical Paper / Journal Article
2004-07-19
Technical Paper / Journal Article
1999-10-19