Application of Capillary Fluid Management Techniques to the Design of a Phase Separating Microgravity Bioreactor

Paper #:
  • 932165

Published:
  • 1993-07-01
Citation:
Finger, B., Nevill, G., and Sager, J., "Application of Capillary Fluid Management Techniques to the Design of a Phase Separating Microgravity Bioreactor," SAE Technical Paper 932165, 1993, https://doi.org/10.4271/932165.
Pages:
23
Abstract:
Manned space missions require the development of compact, efficient, and reliable life support systems. A number of aqueous biological conversion processes are associated with bioregenerative life support systems. Vessels, or bioreactors, capable of supporting these processes in microgravity must be developed.An annular flow bioreactor has been conceived. It has the potential to incorporate containment, phase separation, gas exchange, and illumination into a single vessel. The bioreactor utilizes capillary fluid management techniques and is configured as a cylindrical tube in which a two-phase liquid-gas flow is maintained. Vanes placed around the inner perimeter enhance capillary forces and cause the liquid phase to attach and flow along the interior surface of the tube. No physical barrier is required to complete phase separation. It is shown analytically that liquid film thickness is limited only by vane geometry and that an annular flow bioreactor capable of managing 284 liters would occupy 0.7 m3, less than half the volume of a Spacelab experiment rack.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2004-07-19
Standard
2017-01-03
Technical Paper / Journal Article
2004-07-19