1993-10-01

Development of a Heavy-Duty Turbocharged and Aftercooled CNG-Fueled Lean-Burn Engine - Conversion of a Naturally-Aspirated Diesel Engine into Otto-Type CNG Engine 932818

A heavy-duty, naturally aspirated diesel engine was converted into a turbocharged, aftercooled, compressed natural gas engine. Engine test results show that excess air ratio and ignition timing strongly affect NOx and THC emissions. Leaning the air-fuel mixture reduces NOx emission, but it increases THC emission and combustion becomes unstable above a certain excess air ratio. Retarding the ignition timing reduces both the NOx and THC emissions. Dual-plug ignition improves brake thermal efficiency. The NOx emission level can be reduced to meet the Japanese long-term emission regulation limit for heavy-duty gasoline engines with a sufficient safety margin by appropriately selecting the air-fuel ratio and ignition timing so as to keep the THC emission level below the regulation limit without using any after-treatment. The engine full torque characteristics were almost the same as the base engine throughout the engine speed range, while the maximum exhaust gas temperature was lower. The engine noise level was approximately 6.5 dBA lower than that of the base engine.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Numerical Simulations of Mixture Formation in Combustion Chambers of Lean-Burn Natural Gas Engines Incorporating a Sub-Chamber

2017-01-2280

View Details

TECHNICAL PAPER

Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst

2005-01-0250

View Details

TECHNICAL PAPER

The Effect of Varying the Injected Charge Stoichiometry in a Partially Stratified Charge Natural Gas Engine

2005-01-0247

View Details

X