On the Structural and Material Properties of Mammalian Skeletal Muscle and Its Relevance to Human Cervical Impact Dynamics

Paper #:
  • 952723

Published:
  • 1995-11-01
Citation:
Myers, B., Van Ee, C., Camacho, D., Woolley, C. et al., "On the Structural and Material Properties of Mammalian Skeletal Muscle and Its Relevance to Human Cervical Impact Dynamics," SAE Technical Paper 952723, 1995, https://doi.org/10.4271/952723.
Pages:
12
Abstract:
The absence of constitutive data on muscle has limited the development of models of cervical spinal dynamics and our understanding of the forces developed in the cervical spine during impact injury. Therefore, the purpose of this study is to characterize the structural and material properties of skeletal muscle. The structural responses of the tibialis anterior of the rabbit were characterized in the passive state using the quasi-linear theory of viscoelasticity (r = 0.931 ± 0.032). In passive muscle, the average modulus at 20% strain was 1.75 ± 1.18, 2.45 ± 0.80, and 2.79 ± 0.67 MPa at test rates of 4, 40, and 100 cm·s-1, respectively. In stimulated muscle, the mean initial stress was 0.44 ± 0.15 MPa and the average modulus was 0.97 ± 0.34 MPa. These data define a corridor of responses of skeletal muscle during injury, and are in a form suitable for incorporation into computational models of cervical spinal dynamics.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-12-11
Training / Education
2013-04-09
Article
2017-03-13
Technical Paper / Journal Article
2010-09-28
Training / Education
2013-02-20
Technical Paper / Journal Article
2010-09-28
Training / Education
2013-04-09