1996-05-01

Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-injected Spark-Ignition Engine 961192

Multidimensional computations were carried out to simulate the in-cylinder fuel/air mixing process of a direct-injection spark-ignition engine using a modified version of the KIVA-3 code. A hollow cone spray was modeled using a Lagrangian stochastic approach with an empirical initial atomization treatment which is based on experimental data. Improved Spalding-type evaporation and drag models were used to calculate drop vaporization and drop dynamic drag. Spray/wall impingement hydrodynamics was accounted for by using a phenomenological model. Intake flows were computed using a simple approach in which a prescribed velocity profile is specified at the two intake valve openings. This allowed three intake flow patterns, namely, swirl, tumble and non-tumble, to be considered. It was shown that fuel vaporization was completed at the end of compression stroke with early injection timing under the chosen engine operating conditions. The mixing process and the in-cylinder fuel distribution were found to be significantly affected by the flow structures which are dominated by the intake flow details. More uniform distributions of air-fuel ratio and mixture temperature in the combustion chamber were obtained at the end of compression in the cases using tumble and swirl flow patterns.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Optimization of All SI Engine Combustion Control and Related Events for Efficiency

2006-01-0045

View Details

TECHNICAL PAPER

Gasification of Porous Combustion Chamber Deposits in a Spark Ignition Engine

930773

View Details

TECHNICAL PAPER

Model-Based Engine Calibration for Best Fuel Efficiency

950983

View Details

X