1999-10-10

Comparison of the Dynamic Behavior of Brain Tissue and Two Model Materials 99SC21

Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e., dynamic modulus (phase angle) of 500 (10°) and 1250 Pa (27°) at 0.1 and 260 Hz, respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiffer and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7°) and 5100 Pa (56°) at 0.1 and 260 Hz, respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits nonlinear behavior for strains larger than 1%.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Large Shear Strain Dynamic Behavior of In-Vitro Porcine Brain Tissue and a Silicone Gel Model Material

2000-01-SC17

View Details

TECHNICAL PAPER

Pathophysiologic Responses to Rotational and Translational Accelerations of the Head

720970

View Details

TECHNICAL PAPER

In Vivo Measurements of Human Brain Displacement

2004-22-0010

View Details

X