Comparison of the Dynamic Behavior of Brain Tissue and Two Model Materials

Paper #:
  • 99SC21

Published:
  • 1999-10-10
Pages:
10
Abstract:
Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e., dynamic modulus (phase angle) of 500 (10°) and 1250 Pa (27°) at 0.1 and 260 Hz, respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiffer and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7°) and 5100 Pa (56°) at 0.1 and 260 Hz, respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits nonlinear behavior for strains larger than 1%.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2013-04-09
Training / Education
2013-04-09
Training / Education
2018-05-01
Technical Paper / Journal Article
2011-04-12
Training / Education
2013-04-09
Article
2017-03-13
Training / Education
2013-04-09
Technical Paper / Journal Article
2011-04-12