Criteria

Text:
Sector:
Display:

Results

Viewing 1 to 30 of 19708
2017-03-28
Journal Article
2017-01-1549
Taro Yamashita, Takafumi Makihara, Kazuhiro Maeda, Kenji Tadakuma
Abstract In recent years, the automotive manufacturers have been working to reduce fuel consumption in order to cut down on CO2 emissions, promoting weight reduction as one of the fuel saving countermeasures. On the other hand, this trend of weight reduction is well known to reduce vehicle stability in response to disturbances. Thus, automotive aerodynamic development is required not only to reduce aerodynamic drag, which contributes directly to lower fuel consumption, but also to develop technology for controlling unstable vehicle behavior caused by natural wind. In order to control the unstable vehicle motion changed by external contour modification, it is necessary to understand unsteady aerodynamic forces that fluctuating natural wind in real-world environments exerts on vehicles. In the past, some studies have reported the characteristics of unsteady aerodynamic forces induced by natural winds, comparing to steady aerodynamic forces obtained from conventional wind tunnel tests.
2017-03-28
Journal Article
2017-01-1528
Levon Larson, Ronald Gin, Robert Lietz
Abstract Cooling drag is a metric that measures the influence of air flow travelling through the open grille of a ground vehicle on overall vehicle drag, both internally (engine air flow) and externally (interference air flow). With the interference effects considered, a vehicles cooling drag can be influenced by various air flow fields around the vehicle, not just the air flow directly entering or leaving the engine bay. For this reason, computational fluid dynamics (CFD) simulations are particularly difficult. With insights gained from a previously conducted set of experimental studies, a CFD validation effort was undergone to understand which air flow field characteristics contribute to CFD/test discrepancies. A Lattice-Boltzmann Large Eddy Simulation (LES) method was used to validate several test points. Comparison using integral force values, surface pressures, and cooling pack air mass flows was presented.
2017-03-28
Technical Paper
2017-01-1347
Jianhua Zhou, Min Xu, Bao Wang
Abstract Conventionally, the engines are calibrated under the assumption that engines will be made exactly to the prints, and all the engines from the same batch will be identical. However, engine-to-engine variations do exist which will affect the engine performances, and part-to-part variations, i.e., the tolerance, is an important factor leading to engine-to-engine variations. There are researches conducted on the influence of dimensional tolerances on engine performance, however, the impact of straightness, which is an important geometric tolerance, on lubrication is an unsolved issue. This study presents a systematic method to model the straightness and to analyze its effects on the friction loss. The bearing model is built based on elastohydrodynamic (EHD) theory. Meanwhile a novel modeling method to represent any form of straightness in three-dimensional space is proposed.
2017-03-28
Technical Paper
2017-01-1592
Jingdong Cai, Saurabh Kapoor, Tushita Sikder, Yuping He
Abstract In this research, active aerodynamic wings are investigated using numerical simulation in order to improve vehicle handling performance under emergency scenarios, such as tight cornering maneuvers at high speeds. Air foils are selected and analyzed to determine the basic geometric features of aerodynamic wings. Built upon the airfoil analysis, the 3-D aerodynamic wing model is developed. Then, the virtual aerodynamic wings are assembled with the 3-D vehicle model. The resulting 3-D geometry model is used for aerodynamic analysis based on numerical simulation using a computational fluid dynamics (CFD) software package. The CFD-based simulation data and the vehicle dynamic model generated are combined to study the effects of active aerodynamic wings on handling performance of high-speed vehicles. The systematic numerical simulation method and achieved results may provide design guidance for the development of active aerodynamic wings for high-speed road vehicles.
2017-03-28
Technical Paper
2017-01-0025
Takayuki Kitamura, Naotsugu Shimizu, Yasuyuki Miyake
Abstract In the last decade, radar-based Advanced Driver Assistance Systems (ADAS) have improved safety of transportation. Today, the standardization of ADAS established by New Car Assessment Program (NCAP) is expected to expand its market globally. One of the key technologies of ADAS is the rear-side monitoring system such as Blind Spot Warning (BSW) and Closing Vehicle Warning (CVW). It is required to expand its detection range so that it can monitor not only nearside targets for BSW, but farther targets for CVW. These applications can be achieved using two radar sensors installed at rear-side corner of the vehicle. However, the expanded detection range causes undesirable target detections and decreases target recognition performance. In this paper, a novel solution to improve the performance using DCMP(Directional-Constrained Minimization of Power)-based Beamspace technology using Two-frequency continuous wave (2FCW also known as FSK) is introduced.
2017-03-28
Technical Paper
2017-01-1311
Suman Mishra, Nagesh Gummadi, Lloyd Bozzi, Neil Vaughn, Rob Higley
Abstract Air rush noise is exhaust gas driven flow-induced noise in the frequency range of 500-6500 Hz. It is essential to understand the flow physics of exhaust gases within the mufflers in order to identify any counter measures that can attenuate this error state. This study is aimed at predicting the flow physics and air rush noise of exhaust mufflers in the aforementioned frequency range at a typical exhaust flow rate and temperature. The study is performed on two different muffler designs which show a significant air rush noise level difference when tested on the vehicle. The transient computational study was performed using DES with 2nd order spatial discretization and 2nd order implicit scheme for temporal discretization in StarCCM+. To compare with test data, a special flow test stand is designed so that all high and low frequency contents emanating from the engine are attenuated before the flow enters the test part.
2017-03-28
Technical Paper
2017-01-1304
Alejandro Rosas Vazquez, Fernando Paisano, Diego Santillan Gutierrez
Abstract For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
2017-03-28
Journal Article
2017-01-1352
David Gardiner
Abstract This paper presents an experimental study of the vapour space flammability of Fuel Ethanol (a high-ethanol fuel for Flexible Fuel Vehicles, commonly known as “E85”) and gasoline containing up to 10% ethanol (commonly known as “E10”). The seasonal minimum vapour pressure limits in specifications for automotive spark ignition fuels are intended, in part, to minimize the formation of flammable mixtures in the headspace of vehicle fuel tanks. This is particularly important at subzero temperatures, where the headspace mixture may not be rich enough to prevent combustion in the presence of an ignition source such as a faulty electrical fuel pump. In the current study, the upper temperature limits of flammability were measured for field samples of “E85” and “E10”, and a series of laboratory-prepared blends of denatured ethanol, Before Oxygenate Blending (BOB) gasoline, and n-butane.
2017-03-28
Technical Paper
2017-01-0113
Vaclav Jirovsky
Abstract Today's vehicles are being more often equipped with systems, which are autonomously influencing the vehicle behavior. More systems of the kind and even fully autonomous vehicles in regular traffic are expected by OEMs in Europe around year 2025. Driving is highly multitasking activity and human errors emerge in situations, when he is unable to process and understand the essential amount of information. Future autonomous systems very often rely on some type of inter-vehicular communication. This shall provide the vehicle with higher amount of information, than driver uses in his decision making process. Therefore, currently used 1-D quantity TTC (time-to-collision) will become inadequate. Regardless the vehicle is driven by human or robot, it’s always necessary to know, whether and which reaction is necessary to perform. Adaptable autonomous vehicle systems will need to analyze the driver’s situation awareness level.
2017-03-28
Journal Article
2017-01-0204
Gaurav Gosain, Billy Holland, Thomas McKinley
Abstract Understanding customer usage space and its impact on engine, after treatment, and vehicle duty cycles poses challenges in terms of data noise, data variability and complex interrelations. Moreover, humans are only able to concurrently visualize at most 2 to 3 dimensions, limiting the number of engine parameters that can be considered. Previous studies in this field have been limited to understanding trends in data based on single duty cycle, comparatively short application period and time domain segmented clustering analysis. These techniques have been used to determine representative cycles for specific applications. In this paper, K-Means Clustering is used to classify customer usage space based on tens of dimensions, for multiple duty cycles, and over years of operation. The clusters are evaluated based on system, sub-system, and component-based metrics on a day based unsegmented engine parameter values.
2017-03-28
Journal Article
2017-01-1512
Fuliang Wang, Zhangshun Yin, Shi Yan, Jia Zhan, Heinz Friz, Bo Li, Weiliang Xie
Abstract The validation of vehicle aerodynamic simulation results to wind tunnel test results and simulation accuracy improvement attract considerable attention of many automotive manufacturers. In order to improve the simulation accuracy, a simulation model of the ground effects simulation system of the aerodynamic wind tunnel of the Shanghai Automotive Wind Tunnel Center was built. The model includes the scoop, the distributed suction, the tangential blowing, the moving belt and the wheel belts. The simulated boundary layer profile and the pressure distribution agree well with test results. The baseline model and multiple design changes of the new Buick Excelle GT are simulated. The simulation results agree very well with test results.
2017-03-28
Journal Article
2017-01-1521
Levon Larson, Sudesh Woodiga, Ronald Gin, Robert Lietz
Abstract The airflow that enters the front grille of a ground vehicle for the purpose of component cooling has a significant effect on aerodynamic drag (engine airflow drag). Furthermore, engine airflow is known to be capable of influencing upstream external airflow (interference drag). The combined effect of these phenomena is commonly referred to as cooling drag, which generally contributes up to 10% of total vehicle drag. Due to this coupled nature, cooling drag is difficult to understand as it contains influences from multiple locations around the vehicle. A good understanding of the sources of cooling drag is paramount to drive vehicle design to a low cooling drag configuration. In this work, a production level Lincoln MKZ was modified so that a number of variables could be tested in both static ground and moving ground wind tunnel conditions. All tests were conducted at 80 MPH.
2017-03-28
Journal Article
2017-01-1525
Kosuke Nakasato, Makoto Tsubokura, Jun Ikeda, Keiji Onishi, Shoya Ota, Hiroki Takase, Kei Akasaka, Hisashi Ihara, Munehiko Oshima, Toshihiro Araki
Abstract Because of rising demands to improve aerodynamic performance owing to its impact on vehicle dynamics, efforts were previously made to reduce aerodynamic lift and yawing moment based on steady-state measurements of aerodynamic forces. In recent years, increased research on dynamic aerodynamics has partially explained the impact of aerodynamic forces on vehicle dynamics. However, it is difficult to measure aerodynamic forces while a vehicle is in motion, and also analyzing the effect on vehicle dynamics requires measurement of vehicle behavior, amount of steering and other quantities noiselessly, as well as an explanation of the mutual influence with aerodynamic forces. Consequently, the related phenomena occurring in the real world are still not fully understood.
2017-03-28
Journal Article
2017-01-1546
Joshua Newbon, David Sims-Williams, Robert Dominy
Abstract The effect of the upstream wake of a Formula 1 car on a following vehicle has been investigated using experimental and computational methods. Multiple vehicle studies in conventional length wind tunnels pose challenges in achieving a realistic vehicle separation and the use of a short axial length wake generator provides an advantage here. Aerodynamic downforce and drag were seen to reduce, with greater force reductions experienced at shorter axial spacings. With lateral offsets, downforce recovers at a greater rate than drag, returning to the level for a vehicle in isolation for offsets greater than half a car width. The effect of the wake was investigated in CFD using multiple vehicle simulations and non-uniform inlet boundary conditions to recreate the wake. Results closely matched those for a full two-vehicle simulation provided the inlet condition included unsteady components of the onset wake.
2017-03-14
Journal Article
2017-01-9276
Joseph K. Ausserer, Marc D. Polanka, Jacob A. Baranski, Keith D. Grinstead, Paul J. Litke
Abstract The rapid expansion of the market for remotely piloted aircraft (RPA) includes a particular interest in 10-25 kg vehicles for monitoring, surveillance, and reconnaissance. Power-plant options for these aircraft are often 10-100 cm3 internal combustion engines. Both power and fuel conversion efficiency decrease with increasing rapidity in the aforementioned size range. Fuel conversion efficiency decreases from ∼30% for conventional-scale engines (>100 cm3 displacement) to <5% for micro glow-fuel engines (<10 cm3 displacement), while brake mean effective pressure decreases from >10 bar (>100 cm3) to <4 bar (<10 cm3). Based on research documented in the literature, the losses responsible for the increase in the rate of decreasing performance cannot be clearly defined.
2017-01-10
Technical Paper
2017-26-0279
Onkar P Bhise, S Ravishankar
Abstract Polytetrafluoroethylene (PTFE) is used extensively as the inner tube material in various Aerospace and Industrial hose constructs. The fluoropolymer exhibits various unique mechanical properties from other fluoropolymers including chemical inertness, non-adhesiveness and low friction coefficient making it an attractive solution for hose applications. PTFE material can be modeled using various material modeling approaches including linear-elastic, hyperelastic and viscoplastic depending on the level of accuracy required in predicting material response. Fluoropolymers, like PTFE, are considered viscoelastic-viscoplastic materials. In other words, the material exhibits both viscous and elastic characteristics when undergoing deformation but also possesses behavior in which the deformation of the material also depends on the rate by which loads are applied.
2017-01-10
Technical Paper
2017-26-0336
Ganesh Liladhar Yewale, Abhishek Tapkire, D Radhakrishna, Popat Shejwal, Kaushal Singh, Gaurav Panchal
Abstract VRDE has developed Wankel type rotary engine to achieve high power output & fuel efficiency for indigenization programme of UAVs. This engine is meeting all performance parameters needed for intended aerial vehicle. This paper describes the testing methodology followed by development engineers to prove the endurance and reliability of UAV engine for airworthiness certification. This paper gives the brief about testing carried out on the Wankel engine, failures faced during endurance testing and their rectification to enhance the life of the engine to achieve hundred test cycle mark. This paper also briefs about the test set up, endurance test cycles simulating the practical operating conditions.
2016-12-21
Journal Article
2016-01-9082
Bradley Michael, Rani Sullivan, Dulip Samaratunga, Ratneshwar Jha
Abstract Polymer matrix composites are increasingly adopted in aerospace and automotive industries due to their many attributes, such as their high strength to weight ratio, tailorability, and high fatigue and durability performance. However, these materials also have complex damage and failure mechanisms, such as delaminations, which can severely degrade their strength and fatigue performance. To effectively and safely use composite materials in primary structures, it is essential to assess composite damage response for development of accurate predictive models. Therefore, this study focuses on determining the response of damaged and undamaged carbon epoxy beams subjected to vibration loadings at elevated temperatures. The Hilbert-Huang Transform (HHT) technique is used to analyze the beams’ modal response. The HHT shows potential in identifying the nonlinear damaged response of the beams.
2016-11-08
Technical Paper
2016-32-0006
Ran Amiel, Leonid Tartakovsky
Abstract This paper provides an analysis of the effect of a flight altitude on knock occurrence in reciprocating SI turbocharged engines. It presents results of the computational study aimed at investigating reasons leading to knock occurrence and methods of alleviating the knock tendency of small aircraft engines. Turbochargers are frequently used to improve the performance of aviation platforms at high altitudes. Although a turbocharger provides the benefits of increased power, improved BSFC and a downsized engine, it can result in engine knock because of increasing the intake air temperature, due to a rise in the compression ratios as the air density drops. Aerial platforms experience environmental conditions that can change drastically in a matter of a few minutes. Therefore, it is important to be aware of the combined effects of altitude, initial ground temperature, humidity, flight velocity and fuel octane numbers on the emergence of knock following takeoff.
2016-11-08
Technical Paper
2016-32-0045
Joseph K. Ausserer, Marc D. Polanka, Jacob Baranski, Paul Litke
Abstract Small remotely piloted aircraft (10-25 kg) powered by internal combustion engines typically operate on motor gasoline, which has an anti-knock index (AKI) of >80. To comply with the single-battlefield-fuel initiative in DoD Directive 4140.25, interest has been increasing in converting the 1-10 kW power plants in the aforementioned size class to run on lower AKI fuels such as diesel and JP-8, which have AKIs of ∼20. It has been speculated that the higher losses (short circuiting, incomplete combustion, heat transfer) that cause these engines to have lower efficiencies than their conventional-scale counterparts may also relax the fuel-AKI requirements of the engines. To investigate that idea, the fuel-AKI requirement of a 3W-55i engine was mapped and compared to that of the engine on the manufacturer-recommended 98 (octane number) ON fuel.
2016-11-08
Technical Paper
2016-32-0078
Mark R. Mataczynski, Paul Litke, Benjamin Naguy, Jacob Baranski
Abstract Aircraft engine power is degraded with increasing altitude according to the resultant reduction in air pressure, temperature, and density. One way to mitigate this problem is through turbo-normalization of the air being supplied to the engine. Supercharger and turbocharger components suffer from a well-recognized loss in efficiency as they are scaled down in order to match the reduced mass flow demands of small-scale Internal Combustion Engines. This is due in large part to problems related to machining tolerance limitations, such as the increase in relative operating clearances, and increased blade thickness relative to the flow area. As Internal Combustion Engines decrease in size, they also suffer from efficiency losses owing primarily to thermal loss. This amplifies the importance of maximizing the efficiency of all sub-systems in order to minimize specific fuel consumption and enhance overall aircraft performance.
2016-11-07
Technical Paper
2016-22-0006
John R. Humm, Narayan Yoganandan, Frank A. Pintar, Richard L. DeWeese, David M. Moorcroft, Amanda M. Taylor, Brian Peterson
The objective of the present exploratory study is to understand occupant responses in oblique and side-facing seats in the aviation environment, which are increasingly installed in modern aircrafts. Sled tests were conducted using intact Post Mortem Human Surrogates (PMHS) seated in custom seats approximating standard aircraft geometry. End conditions were selected to represent candidate aviation seat and restraint configurations. Three-dimensional head center-of-gravity linear accelerations, head angular velocities, and linear accelerations of the T1, T6, and T12 spinous processes, and sacrum were obtained. Three-dimensional kinematics relative to the seat were obtained from retroreflective targets attached to the head, T1, T6, T12, and sacrum. All specimens sustained spinal injuries, although variations existed by vertebral level.
2016-10-25
Technical Paper
2016-36-0282
Suely M. C. Romeiro, Marcelo L. de Oliveira e Souza
Abstract Modeling and Simulation - M&S is recently gaining more importance and emphasis as an essential method for developing engineering systems especially for aerospace and automotive systems, due to their complexity, integration and even human involvement. The main reasons for M&S having that important role nowadays are: 1) M&S can predict system behavior and possible problems. Therefore, it can reduce time and cost for developing systems, it can avoid future corrections into systems, as well. 2) M&S can be used for conception, training, maintenance, etc., requiring less expensive tools and previously preparing people to the real scenario. 3) When it comes to situations that involve aerospace or other products, where high costs are involved, mistakes can be avoided or at least minimized. Summarizing, M&S can reduce project cost and schedule, and improve quality.
2016-10-25
Technical Paper
2016-36-0377
Alain Giacobini Souza, Luiz Carlos Gadelha Souza
Abstract In designing of the Attitude Control System (ACS) is important take into account the influence of the structure’s flexibility, since they can interact with the satellite rigid motion, mainly, during translational and/or rotational maneuver, damaging the ACS pointing accuracy. In the linearization and reduction of the rigid-flexible satellite mathematic model, usually one loses some important information associated with the satellite true dynamical behavior. One way to recovery this information is include to the ACS design parametric and not parametric uncertainties of the system. The H infinity control method is able to take into account the parametric uncertainty in the control law design, so the controller becomes more robust. This paper presents the design of a robust controller using the H infinity control technique to control the attitude of a rigid-flexible satellite.
2016-10-25
Technical Paper
2016-36-0402
Jairo Cavalcanti Amaral, Marcelo Lopes de Oliveira e Souza
Abstract Switching controls are those that can switch between control or plant modes to perform their functions. They have the advantage of being simpler to design than an equivalent control system with a single mode. However, the transients between those modes can introduce steps or overshootings in the state variables, and this can degrade the performance or even damage the control or the plant. So, the smoothing of such transients is vital for their reliability and mantainability. This is can be of extreme importance in the aerospace and automotive fields, plenty of switchings between manual and autopilot modes via relays, or among gears via clutches, for example. In this work, we present a first strategy for smoothing transients in switching controls of aerospace and automotive systems.
2016-10-25
Technical Paper
2016-36-0437
Gustavo de Carvalho Bertoli, Geraldo José Adabo, Gefeson Mendes Pacheco
Abstract A method for conceptual design of Solar Powered Unmanned Aircraft System (UAS) is presented. This method is based on traditional design methodology - wing loading estimation for preliminary sizing - modified for Solar Powered UAS case. Based on past works on Solar Powered UAS design, proposes a method that considers payload power consumption and therefore its impact on battery sizing. This battery sizing composes vehicle conceptual sizing equation. This method is useful for an assessment of Solar Powered UAS use in specific missions and serving as a start point for a more detailed design. A user interface was developed to automate the design process based on this method proposed.
2016-10-25
Technical Paper
2016-36-0503
Marcelo Lopes de Oliveira e Souza, Roberta de Cássia Ferreira Porto
Systems such as satellites, airplanes, cars and air traffic controls are becoming more and more complex and/or highly integrated. These systems integrate several technologies inside themselves, and must be able to work in very demanding environments, sometimes with few, or none, maintenance services, because of their severe conditions of work. To survive to such severe work conditions, the systems must present high levels of reliability, which are achieved through different approaches and processes. Therefore, it is necessary that the processes of decision analysis and making are progressively improved, taking into account experiences collected before by several technological communities, and then propose efficient modifications in the local processes. These experiences influence the proposition and improvement of several Reliability Standards Series taken by four different approaches and several technological communities.
2016-10-25
Technical Paper
2016-36-0293
Eloy Martins de Oliveira Junior, Marcelo Lopes de Oliveira e Souza
Abstract Cyber-physical systems are joint instances of growing complexity and high integration of elements in the information and physical domains reaching high levels of difficulty to engineer an operate them. This happens with satellites, aircraft, automobiles, smart grids and others. Current technologies as computation, communication and control integrate those domains to communicate, synchronize and operate together. However, the integration of different domains brings new challenges and adds new issues, mainly in real time distributed control systems, beginning with time synchronization. In this paper, we present a discussion on time synchronization and their effects in distributed cyber-physical control systems. To do that, we review the literature, discuss some time synchronization techniques used in cyber-physical systems, and illustrate them via model and simulation of a system representative of the aerospace area.
2016-10-17
Technical Paper
2016-01-2274
Paul V. Harvath, Shaelah Reidy, Jonathan Byer
Abstract The amount of acidic material in used engine oil is considered an indicator of the remaining useful life of the oil. Total acid number, determined by titration, is the most widely accepted method for determining acidic content but the method is not capable of speciation of individual acids. In this work, high molecular weight residue was isolated from used engine oil by dialysis in heptane. This residue was then analyzed using pyrolysis-comprehensive two dimensional gas chromatography with time-of-flight mass spectrometry. Carboxylic acids from C2-C18 were identified in the samples with acetic acid found to be the most abundant. This identification provides new information that may be used to improve the current acid detection methodologies for used engine oils.
2016-10-17
Journal Article
2016-01-2266
Roger Cracknell, Michael Bardon, David Gardiner, Greg Pucher, Heather Hamje, David Rickeard, Javier Ariztegui, Leonardo Pellegrini
Abstract Gasoline Compression Ignition (GCI) has been identified as a technology which could give both high efficiency and relatively low engine-out emissions. The introduction of any new vehicle technology requires widespread availability of appropriate fuels. It would be ideal therefore if GCI vehicles were able to operate using the standard grade of gasoline that is available at the pump. However, in spite of recent progress, operation at idle and low loads still remains a formidable challenge, given the relatively low autoignition reactivity of conventional gasoline at these conditions. One conceivable solution would be to use both diesel and gasoline, either in separate tanks or blended as a single fuel (“dieseline”). However, with this latter option, a major concern for dieseline would be whether a flammable mixture could exist in the vapour space in the fuel tank.
Viewing 1 to 30 of 19708