Criteria

Text:
Sector:
Display:

Results

Viewing 1 to 30 of 84603
2017-06-17
Journal Article
2017-01-9550
David Neihguk, M. L. Munjal, Arvind Ram, Abhinav Prasad
Abstract A production muffler of a 2.2 liter compression ignition engine is analyzed using plane wave (Transfer Matrix) method. The objective is to show the usefulness of plane wave models to analyze the acoustic performance (Transmission Loss, TL) of a compact hybrid muffler (made up of reactive and dissipative elements). The muffler consists of three chambers, two of which are acoustically short in the axial direction. The chambers are separated by an impervious baffle on the upstream side and a perforated plate on the downstream side. The first chamber is a Concentric Tube Resonator (CTR). The second chamber consists of an extended inlet and a flow reversal 180-degree curved outlet duct. The acoustic cavity in the third chamber is coupled with the second chamber through the acoustic impedances of the end plate and the perforated plate.
2017-05-18
Journal Article
2017-01-9375
Lukas Moeltner, Lucas Konstantinoff, Verena Schallhart
The increasingly stringent emission legislation worldwide and the demand for independence from fossil energy carriers represent major challenges for the future development of diesel engines, particularly for maintaining the diesel engine’s positive characteristics, such as its dynamic driving performance and fuel economy, while drastically reducing emissions. This survey investigates alternative fuel blends used in a state-of-the-art EURO 6 diesel engine with different shares of biomass to liquid, hydrotreated vegetable oils and fatty acid methyl ester, which present a possibility to meet these requirements. In particular, the reduction of particulate matter and, as a result, the possibility to reduce nitrogen oxides emissions holds remarkable potential for the application of synthetic fuels in diesel engines. The investigated fuel blends generally demonstrate good applicability when used in the test engine with standard settings.
2017-05-18
Journal Article
2017-01-9678
G Agawane, Varun Jadon, Venkatesham Balide, R Banerjee
Liquid sloshing noise from an automotive fuel tank is becoming increasingly important during frequent accelerating/decelerating driving conditions. It is becoming more apparent due to significant decrease in other noise sources in a vehicle, particularly in hybrid vehicles. As a step toward understanding the dynamics of liquid sloshing and noise generation mechanism, an experimental study was performed in a partially filled rectangular tank. A systematic study was performed to understand the effects of critical parameters like fill level and acceleration/deceleration magnitude. Response parameters like dynamic pressure, dynamic force, dynamic acceleration and sound pressure levels along with high speed video images were recorded. The proposed experimental setup was able to demonstrate major events leading to sloshing noise generation. These events in the sloshing mechanism have been analysed from the dynamic sensor data and correlated with high speed video images.
2017-05-18
Journal Article
2017-01-9679
Alvaro Baleato Varela, Franz Irlinger
Lap time simulation has always been a topic of interest in the automotive industry as it summarizes the whole dynamic performance of an automobile in a single value. During the development of road and race cars, to avoid expensive testing and to prove different design solutions, it is useful to simulate the maximum performance of the vehicles. The cars are driven to their limits to exploit their capabilities, where their dynamic behaviour can be highly non-linear. The vehicle models need to replicate these characteristics as precisely as possible. Due to this, the problem of achieving the optimum lap time with a certain car around a race track is a challenging problem to solve. A method to evaluate the minimum lap time is presented, approaching the optimal solution by coupling a driver model, a simulation environment and genetic algorithms to perform the optimization. The algorithm also offers the possibility to add vehicle parameters to be optimized regarding the lap time.
2017-04-11
Journal Article
2017-01-9452
Wenfeng Zhu
Automotive window seals insulate noise and water leakage, allowing door glass to move smoothly and steadily. Being used repeatedly, it is associated with human sensibility and greatly influences NVH performance. Under high speed driving condition, external aerodynamics leads to additional unsteady load. Its effect on ride comfort attracts increasing interest, which was ignored in previous window seal design. A new method for quantifying and transferring the aerodynamics-induced load on window seal design is proposed. Firstly, by SST (Shear Stress Transport) turbulence model, external turbulent flow field of full scale automotive is established by solving three-dimensional, steady and uncompressible Navier-Stokes equation. With re-exploited mapping algorithm, the aerodynamics pressure on overall auto-body is retrieved and transferred to local glass area to be external loads for seals, thus taking into account the aerodynamics effect of high speed fluid-structure interaction.
2017-04-11
Journal Article
2017-01-9626
Rakaan Chabaan, Mohammad Saad Alam
Abstract Electrical Power Assist Steering (EPAS) systems are currently eliminating the traditional hydraulic steering systems in vehicles. EPAS systems are nonlinear Multi Input Multi Output (MIMO) systems with multiple objectives, including fast response to the driver torque command, good driver feel, and attenuation of load disturbance and sensor noises. Optimal control method is employed to design EPAS system controllers for improved performance and robustness. But these controllers have showed acceptable performance for certain operating conditions and undesired steering feel for high steering gain. In this work, the neural networks are used which replace the optimal controllers of EPAS systems. A Euclidean adaptive resonance theory (EART) networks is trained according to the data collected from an H∞ optimal controller. The collected data represent the controller input and output signals. The said data are normalized and clustered into categories in the EART modules.
2017-04-11
Journal Article
2017-01-9627
André Lundkvist, Roger Johnsson, Arne Nykänen PhD, Jakob Stridfelt
The objective of this study was to investigate if 3D auditory displays could be used to enhance parking assistance systems (PAS). Objective measurements and estimations of workload were used to assess the benefits of different 3D auditory displays. In today’s cars, PAS normally use a visual display together with simple sound signals to inform drivers of obstacles in close proximity. These systems rely heavily on the visual display, as the sound does not provide information about obstacles' location. This may cause the driver to lose focus on the surroundings and reduce situational awareness. Two user studies (during summer and winter) were conducted to compare three different systems. The baseline system corresponded to a system normally found in today’s cars. The other systems were designed with a 3D auditory display, conveying information of where obstacles were located through sound. A visual display was also available. Both normal parking and parallel parking was conducted.
2017-04-11
Journal Article
2017-01-9075
Rami Abousleiman, Osamah Rawashdeh, Romi Boimer
Abstract Growing concerns about the environment, energy dependency, and the unstable fuel prices have increased the sales of electric vehicles. Energy-efficient routing for electric vehicles requires novel algorithmic challenges because traditional routing algorithms are designed for fossil-fueled vehicles. Negative edge costs, battery power and capacity limits, vehicle parameters that are only available at query time, alongside the uncertainty make the task of electric vehicle routing a challenging problem. In this paper, we present a solution to the energy-efficient routing problem for electric vehicles using ant colony optimization. Simulation and real-world test results demonstrate savings in the energy consumption of electric vehicles when driven on the generated routes. Real-world test results revealed more than 9% improvements in the energy consumption of the electric vehicle when driven on the recommended route rather than the routes proposed by Google Maps and MapQuest.
2017-04-11
Journal Article
2017-01-9076
Ioannis Karakitsios, Evangelos Karfopoulos, Nikolay Madjarov, Aitor Bustillo, Marc Ponsar, Dionisio Del Pozo, Luca Marengo
Abstract The aim of this paper is to introduce a complete fast dynamic inductive charging infrastructure from the back-office system (EV management system) up to the Electric Vehicle (EV) (inductive power transfer module, positioning mechanism, electric vehicle modifications) and the EV user (User interface). Moreover, in order to assess the impact of the additional demand of inductive charging on the grid operation, an estimation of the 24-hour power profile of dynamic inductive charging is presented considering, apart from the road traffic, the probability of the need for fast charging, as well as the specifications of the proposed solution. In addition, an energy management system is presented enabling the management of the operation of the inductive charging infrastructure, the interaction with the EV users and the provision of demand response services to different stakeholders.
2017-04-11
Journal Article
2017-01-9625
Souhir Tounsi
Abstract In this paper, we present a design and control methodology of an innovated structure of switching synchronous motor. This control strategy is based on the pulse width modulation technique imposing currents sum of a continuous value and a value having a shape varying in phase opposition with respect to the variation of the inductances. This control technology can greatly reduce vibration of the entire system due to the strong fluctuation of the torque developed by the engine, generally characterizing switching synchronous motors. A systemic design and modelling program is developed. This program is validated following the implementation and the simulation of the control model in the simulation environment Matlab-Simulink. Simulation results are with good scientific level and encourage subsequently the industrialization of the global system.
2017-04-11
Journal Article
2017-01-9451
Marouen Hamdi, Drew Manica, Hung-Jue Sue
Abstract Brightness, transparency, and color impact critically the aesthetics of polymeric surfaces. They can significantly change the perception of common damages such as scratch and mar. Particularly, subtle mar damage is more dependent on surface perceptual properties. In this study, we investigate the impact of these attributes on scratch and mar visibility resistance of commercialized polymeric model systems frequently used in automotive industry. Twenty subjects were involved in a psychophysical test based on pairwise comparison, and results were treated using multidimensional scaling (MDS) analysis. A tied ordinal weighted Euclidian MDS model was used to visualize the relational structures of mar perception space. Results show that scratch visibility resistance tends to decrease with dark, more transparent, and green surfaces. Mar perception was reasonably conceptualized by a two-dimensional MDS space.
2017-04-11
Journal Article
2017-01-9450
Ali Reza Taherkhani, Carl Gilkeson PhD, Philip Gaskell PhD, Rob Hewson PhD, Vassili Toropov PhD, Amin Rezaienia PhD, Harvey Thompson
Abstract This paper investigates the optimization of the aerodynamic design of a police car, BMW 5-series which is popular police force across the UK. A Bezier curve fitting approach is proposed as a tool to improve the existing design of the warning light cluster in order to reduce drag. A formal optimization technique based on Computational Fluid Dynamics (CFD) and moving least squares (MLS) is used to determine the control points for the approximated curve to cover the light-bar and streamline the shape of the roof. The results clearly show that improving the aerodynamic design of the roofs will offer an important opportunity for reducing the fuel consumption and emissions for police vehicles. The optimized police car has 30% less drag than the non-optimized counter-part.
2017-03-28
Technical Paper
2017-01-0215
Mohammad Nahid, Amin Sharfuzzaman, Joydip Saha, Harry Chen, Sadek S. Rahman
More stringent Federal emission regulations and fuel economy requirements have driven the automotive industry toward more sophisticated vehicle thermal management systems to best utilize the waste heat and improve driveline efficiency. The final drive unit in light and heavy duty trucks usually consists of geared transmission and differential housed in a lubricated axle. The automotive rear axles is one of the major sources of power loss in the driveline due to gear friction, churning and bearing loss and have a significant effect on overall vehicle fuel economy. These losses vary significantly with the viscosity of the lubricant. Also the temperatures of the lubricant are critical to the overall axle performance in terms of power losses, fatigue life and wear.
2017-03-28
Technical Paper
2017-01-0020
Mark Zachos
Since 2001, all sensitive information by U.S. Federal Agencies has been protected by strong encryption mandated by the Federal Information Processing Standards (FIPS)140-2 Security Requirements. Today, this same strong security protection has become possible for vehicle networks using modern, cost-effective hardware. This paper describes strong FIPS 140-2 encryption for vehicle communications, using as an example the J1939 protocol. The encrypted J1939 data and commands are tamper-proof, since they cannot be changed or altered -- accidentally or otherwise. The encrypted J1939 data and proprietary commands can be stored and transported securely, giving no unauthorized read access. The examples will show J1939 encryption, including both wired and wireless communication. Two-factor authentication is achieved, since both the hardware and a decryption key are need to decrypt.
2017-03-28
Technical Paper
2017-01-0231
Shih-Po Lin, Yijung Chen, Danielle Zeng, Xuming Su
In the conventional approach, the material properties of laminate composites for crash simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to calibrate the material models in the intermediate stage. In this paper, a laminate cylinder tube under high-impact velocity in the direction of tube axis is chosen as an example for the crash analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction.
2017-03-28
Technical Paper
2017-01-0915
Haomiao Zhang, Yuanzhou Xi, Changsheng Su, Z. Gerald Liu
Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
2017-03-28
Technical Paper
2017-01-1645
Marjorie Myers
Harness and terminal manufacturers are working to support the Automotive industry’s need to reduce energy consumption (and costs) via weight savings initiatives by converting from Cu to Al electrical cables within the traditional open style cable harness termination manufacturing environment. As the Automotive industry is fully aware, terminating nominally same sized Al cable to existing Cu cable designed terminals is neither a functional, nor a reliable, equivalent option – termination design changes are required to be able successfully qualify any such Al cable to Cu terminal connections for Automotive applications. In addition, the harness industry are looking for any new Al ‘open’ crimp termination designs to work well within the existing manufacturing and connector/harness design environment; e.g., ‘open’ crimp termination, on par termination process speed, no post-treatment, etc.
2017-03-28
Technical Paper
2017-01-0894
Nishant Singh
Improving fuel economy has been a key focus across automotive and truck industry for several years if not decades. In heavy duty commercial vehicles, the benefits from small gains in fuel economy lead to significant savings for fleets as well as owners and operators. Additionally, the regulations require vehicles to meet certain GHG levels which closely translate to vehicle fuel economy. For current state of the art FE technologies, incremental gains are so small that they are hard to measure on an actual vehicle. Engineers are challenged with high level of variability to make informed decisions. In such cases, highly controlled tests on Engine and Powertrain dynos are used, however, there is an associated variability even with these tests due factors such as part to part differences, fuel blends and quality, dyno control capabilities and so on.
2017-03-28
Technical Paper
2017-01-0933
Yunhua Zhang, Diming Lou, Piqiang Tan, Zhiyuan Hu, Qian Feng
Biodiesel as a renewable energy is becoming increasingly attractive due to the growing scarcity of conventional fossil fuels. Meanwhile, the development of after-treatment technologies for the diesel engine brings new insight concerning emissions especially the particulate matter pollutants. In order to study the coupling effects of biodiesel blend and CCRT (Catalyzed Continuously Regeneration Trap) on the particulate matter emissions, the particulate matter emissions from an urban bus operated under steady and transient conditions respectively on real road equipped with and without CCRT (the same bus) fuelled with biodiesel blends BD10 (90% pure diesel and 10% biodiesel by volume) and BD0 (100% pure diesel) was tested and analyzed using electrical low pressure impactor (ELPI). Results showed that the particulate number-size distribution of BD10 had two peaks in nuclei mode and accumulation mode respectively except the condition of high speed, which was similar to BD0.
2017-03-28
Technical Paper
2017-01-0216
Joydip Saha, Harshit Coutinho, Sadek S. Rahman
Current and future automotive systems are becoming more complex than ever. They consist of different subsystems such as the engine, transmission, cooling system, driveline, controls systems, HVAC and active/passive safety systems. Hardware and software development for each of these subsystems have different timeline’s. The subsystems are usually developed by different teams within an organization and in some cases are also developed by suppliers. These are some of the main hurdles for carrying out a system level analysis of the vehicle earlier in the development process. Model.CONNECT was used to overcome the above mentioned hurdles by connecting a driveline model, a cooling system model, thermal controller and two-phase flow models with minimal effort.
2017-03-28
Technical Paper
2017-01-1619
Charles Loucks
The introduction of floating point math in Embedded Application ECU’s has made the implementation of complex math functions less error prone but not error proof. This paper shall focus on raising awareness of the pitfalls that come from the use of the basic floating point arithmetic operations, that is, Divide, Multiply, Add and Subtract. Due to the known pitfalls inherent in these basic math operations, it is proposed that a standard library with common functions appropriate for Powertrain Embedded applications (but not limited to Powertrain) be identified. This paper shall explore what these common functions will look like for both standard C code as well as the equivalent versions in Matlab™ Simulink™ One lesson the author of this paper has learned in his career is that companies are slow to adopt common standardized approaches to the basic functionality discussed here (as well as other possible common functions not discussed here.)
2017-03-28
Technical Paper
2017-01-0653
Francesco Catapano, Silvana Di Iorio, Ludovica Luise, Paolo Sementa, Bianca Maria Vaglieco
Ethanol is one of the most suitable alternative fuel for spark-ignition (SI) engines. Its properties such as the higher evaporation heat and octane number as well as the larger oxygen content allow to obtain positive effect on engine performance and on particle formation and emissions. This paper aims to analyze the effect of different methods of ethanol fueling on in-cylinder soot formation and exhaust emissions in a small displacement spark ignition engine. The engine was fueled with gasoline and ethanol. In particular, the ethanol was both blended with gasoline (E30) and dual fueled (EDF). In this latter case, ethanol was direct injected and gasoline was injected into the intake duct. For both the injection configurations, the same percentage of ethanol was supplied: 30%v/v ethanol in gasoline. The GPFI and GDI configurations were also performed as base case. The experimental investigation was carried out in 4-stroke small single cylinder engine.
2017-03-28
Technical Paper
2017-01-1729
Alex K. Gibson
In the increasing development of autonomous vehicles, advanced driver assistance systems play a vital role in the safety of the driver, surrounding vehicles, and pedestrians. The scope of this research is to explore the methods of recognition used to detect obstacles that a vehicle encounters. This includes, but is not limited to, road lines, stop signs, pedestrians, other vehicles, speed bumps, etc. Many challenges are presented as the importance of the visual identification becomes more ubiquitous. For example, when conditions are less than ideal, such as heavy rain, snow, or fog, the approach to ground truth recognition becomes much more difficult. This can be achieved by creating a dynamic system that evaluates the change in luminance and/or ground truth and determines the vanishing point of the current ground truth recognized. These methods cannot be achieved without the fundamental techniques of visual processing.
2017-03-28
Technical Paper
2017-01-1733
Park Watanawongskorn
A variety of successful research on Palm Methyl Ester or Biodiesel reveals that Biodiesel contributes substantial reduction of Particulate Matters (PM) emitted from Compression Ignition (CI) engines due to the impact of effective oxygen function compared with commercial diesel. To reduce further PM emission, oxygenated fuel such as ethanol could be one of the possible options. This research will focus on the effects of ethanol on PM quantity and morphology by blending it with biodiesel. In the experiment, Ethanol will be blended with biodiesel (B100) with the blend ratio of 10%, 20%, and 30% by volume and then operated with a small CI engine in order to investigate PM development. Operating conditions will be divided into 0%, 20%, 40%, 60%, and 80% load of maximum torque. For each operating load, the engine speeds will be varied into 1600, 1800, 2000, 2200, and 2400 RPM.
2017-03-28
Technical Paper
2017-01-1736
Piyamabhorn Uttamung, Jenwit Soparat, Apichart Teralapsuwan, Wuttipong Sritham, Chi-na Benyajati
The energy storage is the main issue for an electric bus operating in the metropolis such as Bangkok. In order to provide a service of at least 200 km per charge and provide enough energy for air condition in bad traffic conditions, the batteries must be installed as many as possible on the bus. However due to an increased awareness to cater for disabled and elderly customers, a low-floor bus concept has been introduced in Thailand. As a result, an installation space in a lower area of the chassis was replaced with passenger seats. Therefore, remaining space for battery pack installation could be inside the passenger room and on the roof. However, the passenger room space would likely be reserved for more seat capacity. An installation of the battery packs on the roof was considered in this study. Such design could be considered unconventional especially in Thailand where such space would normally accommodate only the air condition unit.
2017-03-28
Technical Paper
2017-01-1735
Jenwit Soparat, Piyapong Premvaranon, Chi-na Benyajati, Jiravan mongkoltanatas
The energy storage is the main issue for an electric bus operating in the metropolis such as Bangkok. In order to provide a service of at least 200 km per charge and provide enough energy for air condition in bad traffic conditions, the batteries must be installed as many as possible on the bus. However due to an increased awareness to cater for disabled and elderly customers, a low-floor bus concept has been introduced in Thailand. As a result, an installation space in a lower area of the chassis was replaced with passenger seats. Therefore, remaining space for battery pack installation could be inside the passenger room and on the roof. However, the passenger room space would likely be reserved for more seat capacity. An installation of the battery packs on the roof was considered in this study. Since the energy storage of choice was Lithium-ion batteries, an adequate cooling of battery pack was essential for using in tropical climate during both charge and discharge.
2017-03-28
Technical Paper
2017-01-1738
Jen Chi Liao, Cheng-Yueh Wang
Diesel engines have significant contribution to the formation of particulate matter (PM) in metropolitan areas. Lot of researches have revealed that PM originated from diesel engine is carcinogenic and is closely related to lung cancers. Diesel engines used in trucks, buses, pickups, and automobiles have been regulated systematically with more and more stringent emission standards in the past thirty years. However, non road diesel engines are under much looser regulation. The reduction of PM for non road diesel engines becomes an important issue recently as most of the on road diesels are conformable to the strict standards. Emissions of diesel engines used in construction machinery were measured in real fields for real operations in this study. The variations of NOx concentrations and opacity were recorded in four different working modes, low idle, high idle, rapid acceleration, and partial load. It was found that opacity varied a lot in rapid acceleration.
2017-03-28
Technical Paper
2017-01-1740
Benjaporn Nakornpun
AC2A is a gravity cast aluminium alloy which has been widely used particularly in the automotive industry due to its good castability, weldability and pressure tightness. Even though aluminium gravity cast parts has less porosity trouble than those produced using other die casting processes, little porosity is still not allowed for automotive parts with safety requirement such as brake cylinder, fuel rail, oil pump housing, power steering valve box and clutch cylinder. This work aimed to investigate effects of cooling rate and melt treatment on porosity level of gravity casting AC2A aluminium alloy. Aluminium was performed by gravity casting method. Different mold material and degassing agent addition were used to obtain different controlled level of cooling rate and melt quality, respectively. The different mold was effected to cooling rate and porosity.
2017-03-28
Technical Paper
2017-01-1739
Worrapon Tamuang, Sutee Olarnrithinun, Yingyot Aue-u-lan
A forging process is a process used for producing automotive components such as power train components due to advantages of a high production volume and superior part’s strength. During repeated forging sequence, the forming dies are undergone high forming load which is normally closed to or higher than the yield stress of the die materials especially in the local area. That would be a major cause of a local fatigue crack formation and as a result limit life service of the forming dies. This type of the failure is known as a low cycle fatigue. Normally, the life service is less than 104. To improve the capability of the forging processes, the tool life needs to be known. Thus, to achieve reliable estimation of the tool life during the design, the material testing is required.
2017-03-28
Technical Paper
2017-01-0214
Simon O. Omekanda, Rezwanur Rahman, Eric M. Lott, Sadek S. Rahman, Daniel E. Hornback
Designing an efficient transient thermal system model has become a very important task in improving fuel economy. As opposed to steady-state thermal models, part of the difficulty in designing a transient model is optimizing a set of inputs. The first objective in this work is to develop an engine compatible physics-based 1D thermal model for fuel economy and robust control. In order to capture and study the intrinsic thermo-physical nature, both generic “Three Mass” and “Eight Mass” engine model are developed. The models have been correlated heuristically using Simulink and Flowmaster, respectively. In order to extend the lumped mass engine model it also has been extended to Simulink model. In contrast to the complexity of the models the “Heuristic search” of input parameters has been found to be challenging and time consuming.
Viewing 1 to 30 of 84603