Refine Your Search

Search Results

Technical Paper

77 Basic Investigation of Particulate Matters (O-PM)) and Polycyclic Aromatic Hydrocarbons Emitted by Two-stroke Motorcycles

2002-10-29
2002-32-1846
Characteristics of mass emission of unburned Oil-Particulate Matter and polycyclic aromatic hydrocarbons from two-stroke scooter were investigated. The tests were carried out under with and without oxidation catalyst and various air-fuel ratio ranging from 12 to 16 at 50:1 of fuel-oil mixing ratio for easy sampling. Unburned Oil-Particulate Matter and 4- to 7-rings polycyclic aromatic hydrocarbons were trapped on filter. These compounds were analyzed by high performance liquid chromatography with fluorescence detector. Mass emission of polycyclic aromatic hydrocarbons and unburned Oil-Particulate Matter tends to decrease as air-fuel ratio which increased up to stoichiometric ratio. The highest conversion ratio of unburned Oil-Particulate Matter on the oxidation catalyst was 64%. Conversion ratio of polycyclic aromatic hydrocarbons increased as rings are smaller.
Technical Paper

77 GHz Radar Based Multi-Target Tracking Algorithm on Expressway Condition

2022-12-16
2022-01-7129
Multi-Target tracking is a central aspect of modeling the surrounding environment of autonomous vehicles. Automotive millimeter-wave radar is a necessary component in the autonomous driving system. One of the biggest advantages of radar is it measures the velocity directly. Another big advantage is that the radar is less influenced by environmental conditions. It can work day and night, in rainy or snowy conditions. In the expressway scenario, the forward-looking radar can generate multiple objects, to properly track the leading vehicle or neighbor-lane vehicle, a multi-target tracking algorithm is required. How to associate the track and the measurement or data association is an important question in a multi-target tracking system. This paper applies the nearest-neighbor method to solve the data association problem and uses an extended Kalman filter to update the state of the track.
Technical Paper

78 Development of a combustion analyzer to load onto a motorcycle

2002-10-29
2002-32-1847
In many cases of the development of motorcycle engines, the combustion analysis has been of the engine in laboratory, not of the one onto actual motorcycles. It is mainly because the combustion analyzer in the market is too large to load onto a motorcycle. Pressure sensor, crank angle detector, arithmetic unit and data record device are necessary to analyze the combustion. The arithmetic unit is to process detected signals and generally needs the largest space among them. Needless to say, more reliable results of the combustion analysis could not be obtained under such limited experimental conditions. Therefore, we developed a compact combustion analyzer, which is possible to be loaded onto a motorcycle. The width of the arithmetic unit is 91mm, the depth 98mm and the thickness 20mm. The core chip has the calculation ability of 78MIPS at a clock speed 60MHz, and it has AD converter, DA converter and high-speed counter.
Technical Paper

79 Study on Bearing Lubricity of Two-cycle Engine Oil

2002-10-29
2002-32-1848
Polybutene is generally formulated in two-cycle engine oil in order to prevent smoke and carbon accumulation on exhaust system in motorcycles. The higher content of polybutene in oil is said to be essential to maintain the initial performance of two-cycle engines. However, it is not so known that this polybutene deteriorates the lubricity of bearing. Therefore, we developed a method for evaluating the lubricity of bearing to verify the influence caused by two-cycle engine oils. The test was conducted to measure the temperature of the big end of connecting rod directly while running the engine. The bearing lubricity was evaluated by comparing the temperature of the big end of connecting rod of candidate oils with that of standard oil. A better two-cycle engine oil formulation was able to be led by adding this bearing lubricity test to the JASO(or ISO) standard tests.
Technical Paper

8 A Study of the Influence of Fuel Temperature on Emission Characteristics and Engine Performance of Compression Ignition Engine

2002-10-29
2002-32-1777
In this study, the heated fuels were provided to the diesel engine in order to activate the fuel before the injection. Two test fuels: the normal diesel fuel and cetane, which have different boiling points were used. For both normal diesel fuel and cetane, crank angles at ignition and maximum pressure are delayed and the maximum combustion pressure is decreased as the fuel temperature rises. In cases of large and middle mass flow rate of fuel injection, the brake thermal efficiency and brake mean effective pressure are decreased when the fuel temperature is higher than 570 [K]. However, in the case of small mass flow rate of fuel injection, the brake thermal efficiency is almost independent of fuel temperature. HC and CO concentrations in the exhaust gas emission show constant values regardless of fuel temperature. However, NOx concentration is gradually decreased as the fuel temperature rises.
Technical Paper

80 Systemic Approach in the Analysis of the electric system in modern 2-wheel vehicles

2002-10-29
2002-32-1849
The trend of the 2 wheel vehicle obliges to define accurate methodology for analysing each aspect of the vehicle design. The paper will present the definition process of simple, easy to reproduce, cheap tests for the Electric System, and for the components of it, describing the obtainable results. It will be presented which tests are significant, and which variable must acquired, and the method for organizing the data according to the desired study target aim. As example of the System Approach is proposed the analysis of the Electric Generator Power Unit, it will be presented and described the reason why it could be convenient to install a Lundell Generator.
Technical Paper

800 Series Bumpers for UK/European Markets

1987-02-01
870306
For the launch of the 800 series ARG set out to maintain the paint on line process for plastic bumpers developed for Maestro and Montego, to achieve this, new and exciting problems had to be overcome. A vehicle weight of 1420kg for the highest derivative, a maximum centreline deflection of 15mm front and rear, a profile collapse calculated to absorb energy within 65% of it's cross sectional area and show no damage within the terms of the ECE 42 regulation, ie 4kph centreline and mounting, 2.5kph corner and a perfect colour match combined with the highest quality.
Technical Paper

9000 SERIES COMBINE ELECTRONICS

1989-06-01
891413
Customers are demanding more productive and reliable machines that are easier to operate and service. The machines must also be cost effective. These criteria also apply to electrical and electronic systems. The development of systems to meet these demands on the new 9000 Series combines is described.
Technical Paper

910, D3, 931 Concept to Production

1974-02-01
740429
This paper describes the design and development of the new 60 hp class 910 wheel loader, D3 crawler tractor, and 931 track loader. Special emphasis was placed on designing all vehicles concurrently to achieve lowest possible cost by utilizing a high degree of commonality.
Technical Paper

912iS Fuel Injected Aircraft Engine

2012-10-23
2012-32-0049
The 912 engine is a well known 4-cylinder horizontally opposed 4-stroke liquid-/air-cooled aircraft engine. The 912 family has a strong track record: 40 000 engines sold / 25 000 still in operation / 5 million flight hours annually. 88% of all light aircraft OEMs use Rotax engines. The 912iS is an evolution of the Rotax 912ULS carbureted engine. The “i” stands for electronic fuel injection which has been developed according to flight standards, providing a better fuel efficiency over the current 912ULS of more than 20% and in a range of 38% to 70% compared to other competitive engines in the light sport, ultra-light aircraft and the general aviation industry. BRP engineers have incorporated several technology enhancements. The fully redundant digital Engine Control Unit (ECU) offers a computer based electronic diagnostic system which makes it easier to diagnose and service the engine.
Technical Paper

980 XK: A Critical Automotive Application for HSLA Steel

1977-02-01
770215
Previous applications of 980 XK steels in the automotive industry have been limited. However, to meet increased structural requirements of MVSS-301, AMC has incorporated 980 XK steel in the 1977 Gremlin and Hornet underbody rear sill subassemblies. This paper emphasizes how formability and spot weldability characteristics were optimized in order to meet the vehicular crashworthiness required in this structural application. Traditional mild steel design, forming, and spot welding procedures were successfully modified to utilize 980 XK. These modifications are practical and have been successfully incorporated in production operations.
Technical Paper

A "Hardware-Emulated" Test Analysis of a PEM-Fuel-Cell Hybrid Powertrain

2005-09-11
2005-24-040
Two testing campaigns were performed in Turin by CRF (the Fiat Research Center), and in Rome by ENEA (the Italian National Agency for New Technologies, Energy and the Environment) and the University "ROMA TRE". The work demonstrates the feature of a FC emulator to characterize fuel-cell-propelled drivetrains without employing an expensive PEM fuel cell and it points out how the vehicle fuel consumption, on a specific mission, depends on two fundamental parameters, the accordance of the FC nominal power with the requested power of the mission and the battery State-of-Charge. In the ENEA Research Center "Casaccia", near Rome, the behaviors of PEM Fuel Cells of different sizes (7, 15, 22 kW) were simulated by replacing them with a controlled AC/DC converter, this fuel cell emulator powering a full-scale hybrid drive train.
Technical Paper

A 0-D Calculation Template to Define Crush Space Requirement and Body Front End Force Level Requirement in Concept Stage

2017-01-10
2017-26-0009
Today’s automotive world has moved towards an age where safety of a vehicle is given the topmost priority. Many stringent crash norms and testing methodology has been defined in order to evaluate the safety of a vehicle prior to its launch in a particular market. If the vehicle fails to meet any of these criteria then it is debarred from that particular market. With such stringent norms and regulations in place it becomes quite important on the engineer’s part to define the structural requirements and protect the space to meet the same. If the concept level platform definition is done properly it becomes very easy to achieve the crash targets with less cost and weight impact.
Journal Article

A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry

2009-04-20
2009-01-0678
More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach.
Technical Paper

A 0D Phenomenological Model Using Detailed Tabulated Chemistry Methods to Predict Diesel Combustion Heat Release and Pollutant Emissions

2011-04-12
2011-01-0847
In the last two decades, piston engine specifications have deeply evolved. Indeed, new challenges nowadays concern the reduction of pollutant emissions (EURO regulations) and CO2 emissions. To satisfy these new requirements, powertrains have become very complex systems including a large number of high technology components (high pressure injectors, turbocharger, Exhaust Gas Recirculation (EGR) loop, after-treatment devices...). In this context, the engine control plays a major role in the development and the optimization of powertrains. Few years ago, engine control strategies were mainly defined by experiments on engine test benches. This approach is not adapted to the complexity of future engines: on the one hand, tests are too expensive and on the other hand, they do not give much information to understand interactions between components. Today, a promising alternative to tests may be the use of 0D/1D simulation tools.
Technical Paper

A 1,5 KW Electric Power Microcogeneration Unit Suitable for Domestic Applications

2011-09-11
2011-24-0108
The paper discusses the concept, specification and overall performance of a small microcogeneration unit of about 1,5 kW of electric power and about 4,5 kW of thermal power, suitable for domestic applications, designed at Istituto Motori CNR of Italy. This unit has been conceived specifically as a energy conversion system for houses, having in durability, electric and thermal efficiency the most important goals to be achieved. The paper starts by defining the state of art of small power microcogeneration units and then the ratio which leaded to the adoption of a single cylinder internal combustion engine derived from a motorcycle unit, in order to produce the above mentioned electric and thermal power. This is followed by an explanation of the main design characteristics of the system, with a discussion over the modified elements, made to enhance electric efficiency, emissions and durability and reduce, at the same time, cost coming from new design and manufacture.
Technical Paper

A 1-D Platform to Simulate the Effects of Dedicated EGR on SI Engine Combustion

2017-03-28
2017-01-0524
The thermal efficiency of spark-ignition engines can be enhanced by increasing the rate of exhaust gas recirculation (EGR) such that the low temperature combustion regime could be achieved. However, there is an upper limit on the amount of EGR rate, beyond which flame speed becomes slow and unstable, and local quenching starts to hurt the combustion stability, efficiency, and emission. To resolve this issue, the concept of dedicated EGR has been proposed previously to be an effective way to enhance flame propagation under lean burn condition with even higher levels of EGR with reformate hydrogen and carbon monoxide. In this study, the effects of thermochemical fuel reforming on the reformate composition under rich conditions (1.0 < ϕ < 2.0) have been studied using detailed chemistry for iso-octane, as the representative component for gasoline.
Technical Paper

A 1-D Simulation Model for Analysis and Optimization of Gearbox Rattle Noise

2017-06-05
2017-01-1780
In the design or match process of vehicle powertrain system, gearbox rattle is a common NVH problem which directly affects passengers’ judgment on the quality and performance of vehicle. During the development process of a passenger car, prototype vehicles have serious gear rattle problem. In order to efficiently and fundamentally control this problem, this work first studied the characteristics and mechanisms of the gearbox rattle. The study results revealed that the torsional vibration of powertrain system was the root cause of gearbox rattle. Then a simulation model of the full vehicle was built with the aid of Simulink® toolbox, which is a graphical extension to MATLAB® for modeling and simulation of variety of systems. With this model, the sensitivity analysis and parametrical optimization were performed, and the simulation results indicated that the dual-mass flywheel (DMF) was the best measure to control the rattle.
Technical Paper

A 100 G Frontal Crash Sled Test System

2004-03-08
2004-01-0473
This paper describes the development of a new sled system that can address many safety-related issues pertaining to the racing industry. The system was designed to re-create acceleration and velocity levels similar to levels evident in race car crashes. The sled utilizes equipment typically used in passenger car crash research with the primary change to a specially designed lightweight carriage. This paper will overview the system and the types of crash events that can be simulated. Readers of this paper will gain a much broader understanding of accelerator sled testing and the issues related to the simulation of high speed crashes using physical testing.
Technical Paper

A 1200-V 600-A Silicon-Carbide Half-Bridge Power Module for Drop-In Replacement of an IGBT IPM

2010-04-12
2010-01-1251
A 1200-V, 600-A silicon carbide (SiC) JFET half-bridge module has been developed for drop-in replacement of a 600-V, 600-A IGBT intelligent power module (IPM). Advances in the development of SiC field effect transistors have resulted in reliable high yield devices that can be paralleled and packaged to produce high-voltage and high-current power modules not only competitive with existing IGBT technology but the modules have expanded capabilities. A SiC vertical junction field effect transistor VJFET has been produced with the properties of lower conduction loss, zero tail current, higher thermal conductivity, and higher power density when compared to a similarly rated silicon IGBT or any practical SiC MOSFETs previously reported. Three prototype SiC JFET half-bridge modules with gate drivers have been successfully integrated into a three-phase 30-kW (continuous), 100-kW (intermittent) AC synchronous motor drive designed to control a traction motor in an electric vehicle.
X