Criteria

Text:
Sector:
Display:

Results

Viewing 91 to 120 of 85313
2017-10-08
Technical Paper
2017-01-2453
Shuang Liu, Lina Pan, Xin Jiang, Yujiao Wang, Kun Liu, Yang Xia
Abstract Quick drop battery system was the core components of the electric vehicles, the reliability and compatibility of quick drop battery system was directly related to the popularization and application of electric vehicles. In this article, a split type battery management system and a split type high voltage architecture was used to achieve better charging compatibility. Meanwhile the number of fast switching connector’s pin is reduced and the plug life was prolonged to more than 10000 times by using floating structure. For battery management system (BMS), the state of charge (SOC) estimation was based on dynamic voltage correction, and make estimation accuracy reach to less than 5%. Rotary slot limit and fast locking mechanism had been designed for the first time and the precision of battery system assembling could control within 3mm, hence the floating structure’s damage could be reduced and the mechanical life could be enhanced.
2017-10-08
Technical Paper
2017-01-2454
Yiqi Jia, Gangfeng Tan, Cenyi Liu, Shengguang Xiong, Zehao Yang, Xingmang Zheng
Abstract In these years, the advantages of using phase change material (PCM) in the thermal management of electric power battery has been wide spread. Because of the thermal conductivity of most phase change material (eg.wax) is low, many researchers choose to add high conductivity materials (such as black lead). However, the solid-liquid change material has large mass, poor flow-ability and corrosively. Therefore, it still stays on experiential stage. In this paper, the Thermal characteristics of power battery firstly be invested and the requirements of thermal management system also be discussed. Then a new PCM thermal management has been designed which uses pure water as liquid phase change material, adopts PCM with a reflux device for thermal management.
2017-10-08
Technical Paper
2017-01-2450
Chao Xu, Fuyuan Yang, Jinyu Zhang
Abstract Power-split configuration is highlighted as the most popular concept for full hybrid electric vehicles (HEV). However, the energy management and design of power-split heavy duty truck under Chinese driving conditions still need to be investigated. In this paper, the parametric design, a rule-based control strategy and an equivalent consumption minimization strategy (ECMS) for the power-split heavy duty truck are presented. Besides, the influence of a penalty factor also discussed under ECMS algorithm. Meanwhile, two different methods to search the engine operation point have been proposed and the reason of different economy performance is presented by using energy flow chart. And the simulation results show both fuel consumption can satisfy the second phase fuel consumption standard and the third phase fuel consumption standard which will be implemented in 2020, under C-WTVC (Chinese-World Transient Vehicle Cycle).
2017-10-08
Technical Paper
2017-01-2452
Kingsley Joel Berry, Abdrahamane Traore, Aravind Krishna, Pavankumar Gangadhar, Allan Taylor
This paper documents the electrical infrastructure design of a Hybrid Go Kart competition vehicle which includes a dual Fuel Cell power system, Ultra Capacitors for energy storage, and a dual AC induction motor capable of independent drive. The Kart was built primarily to compete in the 2009 Formula Zero international event. This paper emphasized the vehicle model and control strategy as a result of three (3) graduate student research projects. The vehicle was fabricated and tested but did not participate in the race competition since the race organization folded. The vehicle model was developed in Simulink to determine whether the fuel cell and ultra-capacitor combination will be sufficient for peak transient power requirement of 14 kW. The vehicle’s functional description and performance specifications are documented including the integration of the fuel cell power modules, energy storage system, power converters, and AC motor and motor controllers.
2017-10-08
Technical Paper
2017-01-2444
Yanzhong Wang, Guanhua Song
Abstract High-speed rotating gears are generally lubricated by spray lubrication. Lubricating oil is driven by high-speed rotating gear, and some lubricating oil will be excited into oil mist, so that the gears are in the gas-liquid mixed environment. In this paper, the computational fluid dynamics model of the spray lubrication cooling process is established based on the gear heat transfer behavior under the spray lubrication condition. The influence of different spray parameters on the liquid-solid two-phase convective heat transfer coefficient is obtained. On this basis, the accurate boundary conditions of gear temperature field calculation are analyzed by studying the heat transfer behavior of high speed gear spray lubrication. The calculation model of gear temperature based on spray lubrication is established, and the temperature field distribution of gear is obtained.
2017-10-08
Technical Paper
2017-01-2442
Bingqing Xiao, Wei Wu, Jibin Hu, Shihua Yuan, Chenhui Hu
Abstract The prediction of temperature distribution and variation of oil-cooled sliding disk pair is essential for the design of wet clutches and brakes in a vehicle transmission system. A two-phase coupled heat transfer model is established in the study and some fluid-solid coupled heat transfer simulations are performed to investigate the thermal behaviors of wet clutch during sliding by CFD method. Both cooling liquid and grooved solid disks are contained in the heat transfer model and the heat convection due to the cooling liquid in the radial grooves is also considered by fluid-solid coupled transient heat transfer simulations. The temperature distribution and variation of the grooved disk are discussed and analyzed in detail. The results indicate that the temperature distribution on the grooved disk is nonuniform. The temperature within the middle radius area is higher than that in the inner and outer radius area.
2017-10-08
Technical Paper
2017-01-2443
Ziwang Lu, Hongxu Chen, Lijun Wang, Guangyu Tian
Abstract During the engaging process of sleeve and teeth ring in mechanical transmissions, their rotational speed and position differences cause multiple engaging ways and trajectories, and casual impacts between them will delay the engaging process and cause a long power off time for a gear shift. In order to reveal the engaging mechanism of the sleeve and the teeth ring, it is essential to build a high-fidelity model to cover all of their engaging ways and capture their speed changes for an impact. In this work, our contribution is that their impact process is modeled as a precise, continuous and nonlinear damping model, and then a hybrid automaton model is built to connect the system dynamics in different mechanical coupling relationships.
2017-10-08
Technical Paper
2017-01-2441
Zhao Ding, Li Chen, Chengliang Yin, Jian Yao, Chunhao Lee, Farzad Samie
Abstract Rotating clutches play an important role in automatic transmissions (AT), dual-clutch transmissions (DCT) and hybrid transmissions. It is very important to continually improve the transmission systems in the areas such as simplifying actuator designs, reducing cost and increasing controllability. A new concept of electrical motor driven actuation using a wedge mechanism, a wedge clutch, demonstrates potential benefits. This wedge clutch has the characteristics of good mechanical advantage, self-reinforcement, and faster and more precise controllability using electrical motor. In this paper, a new rotating wedge clutch is proposed. It presents a challenge since the motor actuator has to be stationary while the clutch piston is rotating. A new mechanism to connect the motor to the wedge piston, including dual-plane bearings and two mechanical ramp linkages, is studied. The design and verification of the physical structure of the actuator are discussed in detail in the paper.
2017-10-08
Technical Paper
2017-01-2439
Srinivasan Paulraj, Saravanan Muthiah
Abstract Poor clutch life is a major issue for some light commercial vehicle models. Clutch overheating is the primary cause for clutch failure. Some of the reasons include inappropriate gear selection by the driver, poor low-end dynamic torque availability from an engine, heavy stop and go traffic, vehicle overloading resulting in excessive clutch slippage especially in gradients, riding of the clutch pedal by the customer etc. These situations lead to a high thermal energy dissipation at the clutch, increasing clutch wear and in extreme conditions leading to not only poor shift quality but also eventual clutch failure. Unfortunately, it is not practical to monitor clutch temperature in a production vehicle due to high costs or technical challenges involved. This paper describes 1-D thermal modeling of single plate dry clutch typically used in passenger car/truck and bus applications.
2017-10-08
Technical Paper
2017-01-2437
Renjith S, Vinod Kumar Srinivasa, Umesh Venkateshaiah
Abstract The jet lubrication method is extensively used in the constant mesh high performance transmission system operating at range of speeds though it affects mechanical efficiency through spin power loss. The lubrication jet has a key role to maintain the meshing gears at non-fatal thermal equilibrium by effectively dissipating the heat generated to the surrounding. Heat transfer coefficient (HTC) is the indicator of the thermal behavior of the system, which provides great insight of efficient lubrication system that needs to be employed for prescribed type of transmission. In this study, a segment of the transmission unit which constitutes a gear pair is used for the simulation. Parametric study is carried out by considering the critical parameters affecting the thermal performance such as lubrication jet flow rate and rotational motions of the gears with speeds and temperatures.
2017-10-08
Technical Paper
2017-01-2466
Graham Arnold
Abstract Regenerative braking is an important factor in improving hybrid electric vehicle efficiency. This paper proposes a new regenerative braking strategy that activates preemptively during a distracted driving scenario, before service brakes are utilized. The strategy uses onboard advanced driver assistance systems, such as forward facing radar, to detect when an object is approaching fast enough to enable regenerative braking in response. The proposed strategy is simulated on a full-vehicle model of a series plug-in hybrid electric vehicle. A driver model is developed to mimic the behavior of a distracted driver through delayed response time to the changing speed of a lead vehicle. Multiple trials are simulated using different combinations of existing regenerative braking strategies along with the proposed strategy. Results show that a preventative regenerative braking control strategy can recuperate significant amounts of energy while also improving vehicle safety.
2017-10-08
Technical Paper
2017-01-2464
Xinyou Lin, Chaoyu Wu, Qingxiang Zheng, Liping Mo, Hailin Li
Abstract The range-extended electric vehicle (REEV) is a complex nonlinear system powered by internal combustion engine and electricity stored in battery. This research proposed a Multiple Operation Points (MOP) control strategy of REVV based on operation features of REEV and the universal characteristic curve of the engine. The switching logic rules of MOP strategy are designed for the desired transition of the operation mode, which makes the engine running at high efficiency region. A Genetic algorithm (GA) is adapted to search the optimal solution. The fuel consumption is defined as the target cost function. The demand power of engine is defined as optimal variable. The state of charge (SOC) and vehicle speed are selected as the state variables. The dynamic performance of vehicle and cycling life of battery is set as the constraints. The optimal switching parameters are obtained based on this control strategy.
2017-10-08
Technical Paper
2017-01-2462
Ruipeng Zhang, Kaichuang Meng
Abstract Due to the increase of mining production and rising labor costs, manufacturers of construction and mining equipment are engaged in developing large tonnage mining truck with good dynamic performance and high transport efficiency. This paper focuses on the improvement of the dynamic performance of a 52t off-highway dump truck. According to the characteristics of its operating cycle, electric auxiliary drive system is installed in the front axle aiming at improving the utilization rate of ground adhesion. The new all-wheel drive hybrid electric system makes it possible for dump truck transports at a higher velocity. Both the conventional dump truck model and the new all-wheel drive hybrid truck model are built based on the AVL-Cruise platform. Meanwhile, under the premise of enough dynamic performance, fuel consumption can be minimized by collaborative optimization in Isight.
2017-10-08
Technical Paper
2017-01-2460
Wenbin Liu, Qiang Song, Yiting Li, Wanbang Zhao
Abstract In this paper, a novel driver model is proposed to track vehicle speed in MIL (Model-in-the-Loop) test system, which has structural consistency with HIL (Hardware-in-the-Loop) test system. First, the MIL test system which contains models of driver, vehicle and test bench is established. Second, according to the connections of the established models in Matlab/Simulink environment, the vehicle speed is calculated in vehicle model. Emphatically, through the deviation between driving cycle speed and calculated vehicle speed, PI controller in driver model adjusts the vehicle speed to ideal point through sending the torque command to drive motor, the ILC (Iterative Learning Control) controller modifies and stores P value of PI controller. Then, in order to obtain the better modification of PI controller, iterative learning control algorithm is deeply researched in term of types and parameters.
2017-10-08
Journal Article
2017-01-2459
Liu Xiaojun, Yu Jinpeng, Yang Xia, Wu Daoming, Jie Zhu
Abstract In the case of electric vehicles, due to the charging current limitation of lithium battery at low temperatures (below -20°C), it has been proposed to heat the battery pack up to a suitable temperature range before charging through a liquid-heating plate with PTC. However, at a low state of charge (SOC), there is a question which one could take the place of battery pack to supply power for PTC when heating. So that off-board charger (OFC) has been considered to supply power for PTC in this paper. In order to control the current charging into the battery pack as less as possible at low temperatures, three control schemes of battery management system (BMS) are proposed and compared. Scheme 1: BMS controls the value of charging current request close to the working current of PTC. Scheme 2: BMS controls the value of charging voltage request to reach a state of relative balance. Scheme 3: BMS disconnects the pack from the charger and keeps the connection between PTC and charger.
2017-10-08
Technical Paper
2017-01-2458
Mohamed Awadallah, Peter Tawadros, Paul Walker, Nong Zhang
Abstract Driven by stricter mandatory regulations on fuel economy improvement and emissions reduction, market penetration of electrified vehicles will increase in the next ten years. Within this growth, mild hybrid vehicles will become a leading sector. The high cost of hybrid electric vehicles (HEV) has somewhat limited their widespread adoption, especially in developing countries. Conversely, it is these countries that would benefit most from the environmental benefits of HEV technology. Compared to a full hybrid, plug-in hybrid, or electric vehicle, a mild hybrid system stands out due to its maximum benefit/cost ratio. As part of our ongoing project to develop a mild hybrid system for developing markets, we have previously investigated improvements in drive performance and efficiency using optimal gearshift strategies, as well as the incorporation of high power density supercapacitors.
2017-10-08
Technical Paper
2017-01-2457
Rickard Arvidsson, Tomas McKelvey
Abstract A two-state forward dynamic programming algorithm is evaluated in a series hybrid drive-train application with the objective to minimize fuel consumption when look-ahead information is available. The states in the new method are battery state-of-charge and engine speed. The new method is compared to one-state dynamic programming optimization methods where the requested generator power is found such that the fuel consumption is minimized and engine speed is given by the optimum power-speed efficiency line. The other method compared is to run the engine at a given operating point where the system efficiency is highest, finding the combination of engine run requests over the drive-cycle that minimizes the fuel consumption. The work has included the engine torque and generator power as control signals and is evaluated in a full vehicle-simulation model based on the Volvo Car Corporation VSIM tool.
2017-10-08
Technical Paper
2017-01-2456
Yun Li, Jing Shang, Shiwu Zhu, Alina Ma, Robin Lyle, Zijian Li, Nannan Wang, Hua Rong
Abstract This paper presents an Integrated Power Module (IPM) and an Integrated Power Unit (IPU) based on IGBT double-sided cooling technology. The IPU can be used as the motor controller in electric vehicle applications, and the IPM integrated in the IPU is packaged with the latest trench field-stop IGBT devices and is utilized with planar bonding as well as double-sided cooling technology. By adopting the planar bonding and double-sided cooling technology, module design has achieved elimination of the traditional wire bonds, even temperature distribution for the surface of dies, and improvement of thermal performance, which results in lower junction temperature rise. Through these factors, power cycling capability and long-time reliability of the module can be significantly improved. Test results show that compared with traditional single-sided direct liquid cooling module with a pin-fin structure, thermal resistance has been reduced by 23%.
2017-10-08
Technical Paper
2017-01-2182
Xikai Liu, Xingyu Liang, Yonge Wu, Yuesen Wang
Abstract According to the study of the soot emission in the combustion of diesel,a new reduced mechanism for n-Heptane was constructed to describe the combustion process in diesel engine by using sensitivity analysis.Furthermore,verifying the ignition delay time in combustion process by using CHEMKIN PRO in different pressure of 13.5 atm and 42 atm, initial temperatures of 600k and equivalence ratio of 0.5 and 1.0.Then,compare the simulated results with the experiment data, the mechanisms used in the simulation were Lawrence Livermore National Laboratory (LLNL) detail mechanism and the State Key Laboratory of Engine (SKLE) mechanism.
2017-10-08
Technical Paper
2017-01-2184
Vincenzo De Bellis, Fabio Bozza, Daniela Tufano
Abstract Nowadays, the development of a new engine is becoming more and more complex due to conflicting factors regarding technical, environmental and economic issues. The experimental activity has to comply with the above complexities, resulting in increasing cost and duration of engine development. For this reason, the simulation is becoming even more prominent, thanks to its lower financial burden, together with the need of an improved predictive capability. Among the other numerical approaches, the 1D models represent a proper compromise between reliability and computational effort, especially if the engine behavior has to be investigated over a number of operating conditions. The combustion model has a key role in this contest and the research of consistent approaches is still on going. In this paper, two well-assessed combustion models for Spark Ignition (SI) engines are described and compared: the eddy burn-up theory and the fractal approach.
2017-10-08
Technical Paper
2017-01-2183
Xiangfeng Yu, Shengcheng Li, Zhishuang Ma, Wei Du, Fengxiang Huang, Weijun Huang, Beiping Jiang
Abstract A reciprocating piston expander model based on organic Rankine cycle (ORC) is built for engine waste heat recovery. The expander characterizes by variable expansion ratio through adjusting working fluid injection timing. This paper investigates the effect of working fluid evaporating pressure, expansion ratio and clearance volume on the expander performance which mainly includes output power, equivalent recovery efficiency, total output power, expander efficiency, and the weighted efficiency of the expander, weighted heat recovery efficiency of the expander. The results demonstrate that the total output power and the equivalent heat recovery efficiency increase with working fluid evaporating pressure under overall operating conditions, while the increment is negligible. The expander reaches maximum total output power up to 83.4kW under c100 engine condition and 1.1MPa working fluid evaporating pressure within the research operating conditions.
2017-10-08
Technical Paper
2017-01-2185
Chao He, Jiaqiang Li, Longqing Zhao, Yanyan Wang, Wei Gu
Abstract More and more stringent emission regulations and the desire to reduce fuel consumption lead to an increasing demand for precise and close-loop combustion control of diesel engines. Cylinder pressure-based combustion control is gradually used for diesel engines in order to enhance emission robustness and reduce fuel consumption. However, it increases the cost. In this paper, a new prediction method of combustion parameters is presented for diesel engines. The experiment was carried out on a test bench to obtain the ECU (Electronic Control Unit) signals of a heavy-duty diesel engine by calibration software. The combustion parameters was measured by a combustion analyzer, such as maximum cylinder pressure (MCP), maximum combustion temperature (MCT), and combustion center of gravity (CA50). A combustion model using genetic programming (GP) is built. The input parameters are chosen from the ECU signals, such as engine speed, engine load, injection quantities, inlet air flow rate.
2017-10-08
Technical Paper
2017-01-2186
Lukas Urban, Michael Grill, Sebastian Hann, Michael Bargende
Abstract Engine Knock is a stochastic phenomenon that occurs during the regular combustion of spark ignition (SI) engines and limits its efficiency. Knock is triggered by an autoignition of local “hot spots” in the unburned zone, ahead of the flame front. Regarding chemical kinetics, the temperature and pressure history as well as the knock resistance of the fuel are the main driver for the autoignition process. In this paper, a new knock modeling approach for natural gas blends is presented. It is based on a kinetic fit for the ignition delay times that has been derived from chemical kinetics simulations. The knock model is coupled with an enhanced burn rate model that was modified for Methane-based fuels. The two newly developed models are incorporated in a predictive 0D/1D simulation tool that provides a cost-effective method for the development of natural gas powered SI engines.
2017-10-08
Technical Paper
2017-01-2188
Bruno S. Soriano, Edward S. Richardson, Stephanie Schlatter, Yuri M. Wright
Abstract Dual-fuel combustion is an attractive approach for utilizing alternative fuels such as natural gas in compression-ignition internal combustion engines. In this approach, pilot injection of a more reactive fuel provides a source of ignition for the premixed natural gas/air. The overall performance combines the high efficiency of a compression-ignition engine with the relatively low emissions associated with natural gas. However the combustion phenomena occurring in dual-fuel engines present a challenge for existing turbulent combustion models because, following ignition, flame propagates through a partially-reacted and inhomogeneous mixture of the two fuels. The objective of this study is to test a new modelling formulation that combines the ability of the Conditional Moment Closure (CMC) approach to describe autoignition of fuel sprays with the ability of the G-equation approach to describe the subsequent flame propagation.
2017-10-08
Technical Paper
2017-01-2190
Alessandro D'Adamo, Marco Del Pecchia, Sebastiano Breda, Fabio Berni, Stefano Fontanesi, Jens Prager
Abstract CFD simulations of reacting flows are fundamental investigation tools used to predict combustion behaviour and pollutants formation in modern internal combustion engines. Focusing on spark-ignited units, most of the flamelet-based combustion models adopted in current simulations use the fuel/air/residual laminar flame propagation speed as a background to predict the turbulent flame speed. This, in turn, is a fundamental requirement to model the effective burn rate. A consolidated approach in engine combustion simulations relies on the adoption of empirical correlations for laminar flame speed, which are derived from fitting of combustion experiments. However, these last are conducted at pressure and temperature ranges largely different from those encountered in engines: for this reason, correlation extrapolation at engine conditions is inevitably accepted. As a consequence, relevant differences between proposed correlations emerge even for the same fuel and conditions.
2017-10-08
Technical Paper
2017-01-2191
Yachao Chang, Ming Jia, Yanzhi Zhang, Yaopeng Li, Weiwei Fan, MaoZhao Xie
Abstract Dimethyl ether (DME) attracts increasing attentions in recent years, because it can reduce the carbon monoxide (CO), unburned hydrocarbon (HC), and soot emissions for engines as the transportation fuel or the fuel additive. In this paper, a reduced DME oxidation mechanism is developed using the decoupling methodology. The rate constants of the fuel-related reactions are optimized using the non-dominated sorting genetic algorithm II (NSGA-II) to reproduce the ignition delay times in shock tubes and major species concentrations in jet-stirred reactors (JSR) over low-to-high temperatures. In NSGA-II, the range of the rate constants was considered to ensure the reliability of the optimized mechanism. Moreover, an improved objective function was proposed to maintain the faithfulness of the optimized mechanism to the original reaction mechanism, and a new method was presented to determine the optimal solution from the Pareto front.
2017-10-08
Technical Paper
2017-01-2192
Shenghui Zhong, Zhijun Peng, Yu Li, Hailin Li, Fan Zhang
Abstract A 3-D DNS (Three-Dimensional Direct Numerical Simulation) study with detailed chemical kinetic mechanism of methane has been performed to investigate the characteristics of turbulent premixed oxy-fuel combustion in the condition relevant to Spark Ignition (SI) engines. First, 1-D (one-dimensional) laminar freely propagating premixed flame is examined to show a consistent combustion temperature for different dilution cases, such that 73% H2O and 66% CO2 dilution ratios are adopted in the following 3-D DNS cases. Four 3-D DNS cases with various turbulence intensities are conducted. It is found that dilution agents can reduce the overall flame temperature but with an enhancement of density weighted flame speed. CO2 dilution case shows the lowest flame speed both in turbulent and laminar cases.
2017-10-08
Technical Paper
2017-01-2193
Andreas Nygren, Anders Karlsson
Abstract When developing new combustion concepts, CFD simulations is a powerful tool. The modeling of spray formation is a challenging but important part when it comes to CFD modelling of non-premixed combustion. There is a large difference in the accuracy and robustness among different spray models and their implementation in different CFD codes. In the work presented in this paper a spray model, designated as VSB2 has been implemented in OpenFOAM. VSB2 differ from traditional spray models by replacing the Lagrangian parcels with stochastic blobs. The stochastic blobs consists of a droplet size distribution rather than equal sized droplets, as is the case with the traditional parcel. The VSB2 model has previously been thoroughly validated for spray formation and combustion of n-heptane. The aim of this study was to validate the VSB2 spray model for ethanol spray formation and combustion as a step in modelling dual-fuel combustion with alcohol and diesel.
2017-10-08
Technical Paper
2017-01-2194
Mateusz Pucilowski, Mehdi Jangi, Sam Shamun, Martin Tuner, Xue-Song Bai
Abstract Heavy-duty direct injection compression ignition (DICI) engine running on methanol is studied at a high compression ratio (CR) of 27. The fuel is injected with a common-rail injector close to the top-dead-center (TDC) with two injection pressures of 800 bar and 1600 bar. Numerical simulations using Reynold Averaged Navier Stokes (RANS), Lagrangian Particle Tracking (LPT), and Well-Stirred-Reactor (WSR) models are employed to investigate local conditions of injection and combustion process to identify the mechanism behind the trend of increasing nitrogen oxides (NOx) emissions at higher injection pressures found in the experiments. It is shown that the numerical simulations successfully replicate the change of ignition delay time and capture variation of NOx emissions.
2017-10-08
Technical Paper
2017-01-2195
Mei Wang, Xianyin Leng, Zhixia He, Shengli Wei, Liang Chen, Yu Jin
Abstract The spark-ignited pre-chamber stratified combustion system is one of the most effective ways of expanding lean-burn ability and improving the performance of a natural gas engine. For these pre-chamber engines, the geometrical structure of orifices between the pre- and main chamber plays a significant role on the gas flow and flame propagation behaviors. The present study aims to investigate the effects of orifice number and diameter on combustion characteristics of a Shengdong T190 natural gas engine through CFD simulation. Various geometrical structures for the pre-chamber orifices were designed, offering variations in the number of orifices (4 to 8), and in the diameter of orifices (1.6mm to 2.9mm). A non-dimensional parameter β was employed to characterize the relative flow area of the orifices in the design. CFD simulations of combustion processes for these designs were carried out using a simplified chemical reaction kinetic mechanism for methane.
Viewing 91 to 120 of 85313