Refine Your Search

Search Results

Technical Paper

Ducted Fuel Injection: Confirmed Re-entrainment Hypothesis

2024-04-09
2024-01-2885
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work.
Technical Paper

New Solution for Material Damage Characterization of CFRP Laminate with Filament Winding Structure Using a Hexagonal-Shaped Mandrel

2024-04-09
2024-01-2884
We are in the context of the analysis of carbon fiber reinforced plastics (CFRP) high-pressure vessel (COPV - Composite Overwrapped Pressure Vessel) manufactured by filament winding (FW). Classically, the parameters of material models are identified based on flat laminate coupons with specific predetermined fiber orientations, and based on standards like the ones of ASTM relevant for flat coupons. CFRP manufactured by FW has a unique and complex laminate structure, which presents curvatures and ply interlacements. In practice, it is important to use coupons produced with the final manufacturing process for the parameter identification of the material models; if classical coupons produced by e.g. ply lamination are used, the effect of FW structure cannot be accounted for, and cannot be introduced in the material models. It is therefore essential to develop an approach to create representative flat coupons based on the FW process.
Technical Paper

Analysis and optimization for generated axial force of Adjustable Angular Roller tripod joint

2024-04-09
2024-01-2887
The tripod constant velocity joint (CVJ) has been widely used in mechanical systems due to its strong load-bearing capacity, high efficiency, and reliability. It has become the most commonly used plunging-type CVJ in automotive drive-shaft. A generated axial force (GAF) with a third-order characteristic of driven shaft speed is caused by the internal friction and motion characteristics in a tripod joint. The large GAF has a negative impact on the NVH (Noise, Vibration, and Harshness) characteristics of automobiles, and this issue is particularly prominent in new energy vehicles. A multi-body dynamic model of the Adjustable Angular Roller (AAR) tripod CVJ is developed to calculate and analyze the GAF. To describe the internal motion of the AAR tripod CVJ, the contact interactions between the roller and the track or the trunnion were modeled using non-linear equivalent spring-damping models for contact collision forces and modified Coulomb friction model for friction.
Technical Paper

Analysis of the Event Data Recorder (EDR) Function of a GM Active Safety Control Module (EOCM3 LC)

2024-04-09
2024-01-2888
The Advanced Driver Assistance System (ADAS) is a comprehensive feature set designed to aid a driver in avoiding or reducing the severity of collisions while operating the vehicle within specified conditions. In General Motors (GM) vehicles, the primary controller for the ADAS is the Active Safety Control Module (ASCM). In the 2013 model year, GM introduced an ASCM utilizing the GM internal nomenclature of External Object Calculation Module (EOCM) in some of their vehicles produced for the North American market. Similar to the Sensing and Diagnostic Module (SDM) utilized in the restraints system, the EOCM3 LC contains an Event Data Recorder (EDR) function to capture and record information surrounding certain ADAS or Supplemental Inflatable Restraint (SIR) events. The ASCM EDR contains information from external object sensors, various chassis and powertrain control modules, and internally calculated data.
Technical Paper

A Percipient Analysis of Jaguar I-PACE Electric Vehicle Energy Consumption Using Big Data Analytics

2024-04-09
2024-01-2879
Vehicle efficiency and range, along with the DC charging speed, are deemed as the most important criteria for an electric vehicle currently. The electric vehicle energy consumption is impacted by the change in temperature along with the driving style and average speed of a customer, all other factors being constant. Hence understanding the patterns and impact of different aspects of an EV range & charging speed is crucial in delivering an electric vehicle with robust efficiency across all weather conditions. In this paper we have analysed vehicle parameters of global Jaguar I-PACE customer data. We present and analyse the collated big data of around 50,000+ unique vehicles with a data aggregate of well over 482 million km. In moderate ambient conditions the analysis indicated a good correlation with 50th to 75th percentile drivers’ energy consumption to the EPA label figure.
Technical Paper

Evaluating Network Security Configuration (NSC) Practices in Vehicle-Related Android Applications

2024-04-09
2024-01-2881
Android applications have historically faced vulnerabilities to man-in-the-middle attacks due to insecure custom SSL/TLS certificate validation implementations. In response, Google introduced the Network Security Configuration (NSC) as a configuration-based solution to improve the security of certificate validation practices. NSC was initially developed to enhance the security of Android applications by providing developers with a framework to customize network security settings. However, recent studies have shown that it is often not being leveraged appropriately to enhance security. Motivated by the surge in vehicular connectivity and the corresponding impact on user security and data privacy, our research pivots to the domain of mobile applications for vehicles. As vehicles increasingly become repositories of personal data and integral nodes in the Internet of Things (IoT) ecosystem, ensuring their security moves beyond traditional issues to one of public safety and trust.
Technical Paper

Coordinated Charging and Dispatching for Large-Scale Electric Taxi Fleets Based on Bi-Level Spatiotemporal Optimization

2024-04-09
2024-01-2880
The operation management of electric Taxi fleets requires cooperative optimization of Charging and Dispatching. The challenge is to make real-time decisions about which is the optimal charging station or passenger for each vehicle in the fleet. With the rapid advancement of Vehicle Internet of Things (VIOT) technologies, the aforementioned challenge can be readily addressed by leveraging big data analytics and machine learning algorithms, thereby contributing to smarter transportation systems. This study focuses on optimizing real-time decision-making for charging and dispatching in large-scale electric taxi fleets to improve their long-term benefits. To achieve this goal, a spatiotemporal decision framework using Bi-level optimization is proposed. Initially, a deep reinforcement learning-based model is built to estimate the value of charging and order dispatching under uncertainty.
Technical Paper

A Study on Correlation between Micro Structure of Porous Sound Absorbing Materials and Sound Absorption Performance Using CT

2024-04-09
2024-01-2883
One of the five major performances of vehicles, NVH(Noise, Vibration, Harshness), has recently emerged in electric vehicles, again. And, front loading NVH simulation is essential to respond nimbly to automotive industry these days. However, the two components of the simulation, mathematical sound absorption modeling equation, and the acoustic parameters, the input factor, is requiring improvement because of lack of robustness. In this study, we tried to strengthen, standardize, and refine the connectivity between micro (fine structure) and macro (acoustic parameter-related physical properties) characteristics, and improve the consistency with actual NVH performance. As a porous polymer material, polyurethane foam, which is widely used for the interior and exterior of automobiles, is treated as a target material.
Technical Paper

Internet of Autonomous Vehicles for The Distribution System of Smart Cities

2024-04-09
2024-01-2882
With the development of internet technology and autonomous vehicles (AVs), the multimodal transportation and distribution model based on AVs will be a typical application paradigm in the smart city scenario. Before AVs carry out logistics distribution, it is necessary to plan a reasonable distribution path based on each customer point, and this is also known as Vehicle Routing Problem (VRP). Unlike traditional VRP, the urban logistics distribution process based on multimodal transportation mode will use a set of different types of AVs, mainly including autonomous ground vehicles and unmanned aerial vehicles (UAVs). It is worth pointing out that there is currently no research on combining the planning of AVs distribution paths with the trajectory planning of UAVs. To address this issue, this article establishes a bilevel programming model. The upper-level model aims to plan the optimal delivery plan for AVs, while the lower-level model aims to plan a driving trajectory for UAVs.
Technical Paper

Research on Automatic Removal of Outliers in Fuel Cell Test Data and Fitting Method of Polarization Curve

2024-04-09
2024-01-2896
Fuel cell vehicles have always garnered a lot of attention in terms of energy utilization and environmental protection. In the analysis of fuel cell performance, there are usually some outliers present in the raw experimental data that can significantly affect the data analysis results. Therefore, data cleaning work is necessary to remove these outliers. The polarization curve is a crucial tool for describing the basic characteristics of fuel cells, typically described by semi-empirical formulas. The parameters in these semi-empirical formulas are fitted using the raw experimental data, so how to quickly and effectively automatically identify and remove data outliers is a crucial step in the process of fitting polarization curve parameters. This article explores data-cleaning methods based on the Local Outlier Factor (LOF) algorithm and the Isolation Forest algorithm to remove data outliers.
Technical Paper

Analysis of Low-Frequency Brake Noise for Drum Brakes on Semi-Trailers

2024-04-09
2024-01-2895
A road test on semi-trailers is carried out, and accelerations of some characteristic points on the braking system,axles,and truck body is measured,also brake pressure and noise around the support frame is acquired.The measured data was analyzed to determine the causes of the brake noise, and the mechanism of the noise of the drum brake of semi-trailers during low-speed braking was investigated. The following conclusions are obtained: (1) Brake noise of the drum brake of the semi-trailer at low-frequency is generated from vibrations of the brake shoes, axle, and body, and the vibration frequency is close to 2nd natural frequency of the axle. (2) Brake noise is generated from stick-slip motion between the brake shoes and the brake drum, where the relative motion between the brake drum and the brake shoes is changed alternately with sliding and sticking, resulting in sudden changes in acceleration and shock vibration.
Technical Paper

Development of Noise Diagnosis and Prediction Technology for Column-Based Electric Power Steering Systems Using Vehicle Controller Area Network Data

2024-04-09
2024-01-2897
The steering system is a critical component for controlling a vehicle's direction. In the context of Advanced Driver Assistance Systems (ADAS) and autonomous vehicles, where drivers may not always be actively holding the steering wheel, early detection of precursor noise signals is essential to prevent serious accidents resulting from the loss of steering system functionality. It is therefore imperative to develop a device capable of early detection and notification of steering system malfunctions. Therefore, the current study aimed to quantify the noise levels generated within the Column-based Electric Power Steering (C-EPS) system of a D-segment sedan. To this end, we measured the uniaxial acceleration in nine noise-generating areas while simultaneously collecting data from three Controller Area Network (CAN) sources that are directly related to steering operation.
Technical Paper

Automotive Validation Using Python to Control Test Equipment and Automate Test Cases

2024-04-09
2024-01-2848
Validation plays a crucial role in any Electronic Development process. This is true in the development of any automotive Electronic Control Unit (ECU) that utilizes the Automotive V process. From Research and Development (R&D) to End of Line (EOL), every automotive module goes through a plethora of Hardware (HW) and Software (SW) testing. This testing is tedious, time consuming, and inefficient. The purpose of this paper is to show a way to streamline validation in any part of the automotive V process using Python as a driving force to automate and control Hardware-in-the-loop (HIL) / Model-in-the-loop (MIL) / Software-in-the-loop (SIL) validation. The paper will propose and outline a framework to control test equipment, such as power supplies and oscilloscopes, load boxes, and external HW. The framework includes the ability to control CAN communication signals and messages.
Technical Paper

Reduced Order Modeling Technology with AI for Model-Based-Development

2024-04-09
2024-01-2850
This paper introduces reduced-order modeling techniques with Artificial Intelligence (AI) for Model-Based Development (MBD). In vehicle development, detailed physical models are replaced by reduced-order models (ROM) to expedite simulations. With recent advancements in AI-based reduced-order modeling, it is expected that modeling work will become more efficient, leading to reduced simulation times. However, the range of simulations (Model-in-the-Loop Simulation - MILS, Hardware-in-the-Loop Simulation - HILS, bench-system) compatible with ROM is limited. To overcome this limitation, this study leverages the ONNX format (Open Neural Network Exchange), a universally supported format among machine learning frameworks, and the Functional Mock-up Interface (FMI), a standard interface format for simulation tools, to enable general-purpose embedded technology with ROM. This study employs a vehicle model in engine surge simulations to validate AI-based reduced-order modeling for MBD.
Technical Paper

Value Driving - A Guide to Save Fuel, Travel Time, and Emissions

2024-04-09
2024-01-2851
Reducing consumption of fossil fuels and resulting emissions remains a goal of the worlds’ population. Perhaps as an aid to encourage more fuel-efficient driving style, many modern motor vehicles are equipped with digital displays of average and instantaneous display of fuel efficiency in miles per gallon (mileage) or liters per 100 kilometers. The display may be interesting to drivers concerned with fuel efficiency, but may not yield desired or best results. What is missing is impact on time of travel; what is the fuel- and time-efficient way to accelerate, what steady speed to travel, and how to decelerate? The author has defined a new fuel efficiency measure described as Dynamic Fuel Cost, in units of currency such as dollars, per travel time in hours, and a microprocessor to compute and display same. Using this display, vehicle operators can choose a maximum steady highway speed, accelerate and decelerate in ways that are fuel-, time- and cost-effective and minimize emissions.
Technical Paper

Hardware-in-the-Loop (HIL) Test Platform Development for Seat Electronic Control Unit (ECU) Validation

2024-04-09
2024-01-2854
Hardware-in-the-loop (HIL) testing is part of automotive V-design which is commonly used in automotive industries for the development of Electronic Control Unit (ECU). HIL test platform provides the capacity to test the ECU in a controlled environment even with scenarios that would be too dangerous or impractical to test on real situation, also the ECU can be tested even before the actual plant under building. This paper presents a HIL test platform for the validation of a seat ECU. The HIL platform can also be used for control and diagnostics algorithm development. The HIL test platform consists of three parts: a real time target machine (dSPACE SCALEXIO AutoBox), an ECU (Magna Seating M12 Module), and a signal conditioning unit (Load Box). The ECU produces the control commands to the real-time target machine through load box. The real time target machine hosts the plant model of the power seat which includes the kinematics and dynamics of the seat movements.
Technical Paper

Streamlining Hybrid Vehicle Control Development with an Efficient MATLAB/Simulink Simulation Platform

2024-04-09
2024-01-2853
Automotive hybrid vehicle controls development is an increasingly complex and challenging task. Therefore, to adequately verify and validate the control algorithms prior to its deployment onto real world testing platforms a robust, scalable, low-maintenance simulation platform is most necessary. The currently available test properties pose major challenges in setup, accessibility, maintenance, complexity, and reusability. The aim of this paper is to present a systematic approach of the initial setup, the adaptation to a vehicle program, and the maintenance of a purely MATLAB/Simulink based simulation platform that alleviates the concerns highlighted above. The platform follows the approach of a level 1 virtualization platform for production intent application software components - without the Run-Time Environment (RTE), Basic Software (BSW), and Microcode Abstraction (MCAL) layers.
Technical Paper

State-of-Charge Estimation for LiFePO4 Batteries with Adaptive State Update in Specific OCV Ranges Using Adaptive Extended Kalman Filter

2024-04-09
2024-01-2855
Lithium-ion batteries are the ubiquitous energy storage device of choice in portable electronics and more recently, in electric vehicles. However, there are numerous lithium-ion battery chemistries and in particular, several cathode materials that have been commercialized over the last two decades. In recent time several automakers have followed trend by announcing their own plans to move their EV production to LFP, due to its high intrinsic safety, fast charging, and long cycle life and cobalt free batteries as well as avoiding other supply chain constrained metals like nickel. Accurate estimation of the state-of-charge (SOC) is crucial for efficient and safe battery applications.
Technical Paper

Characterizing Galling Conditions in Sheet Metal Stamping

2024-04-09
2024-01-2856
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead.
Technical Paper

Distortion Reduction in Roller Offset Forming Using Geometrical Optimization

2024-04-09
2024-01-2857
Roller offsetting is an incremental forming technique used to generate offset stiffening or mating features in sheet metal parts. Compared to die forming, roller offsetting utilizes generic tooling to create versatile designs at a relatively lower forming speed, making it well-suited for low volume productions in automotive and other industries. However, more significant distortion can be generated from roller offset forming process resulting from springback after forming. In this work, we use particle swarm optimization to identify the tool path and resulting feature geometry that minimizes distortion. In our approach, time-dependent finite element simulations are adopted to predict the distortion of each candidate tool path using a quarter symmetry model of the part. A multi-objective fitness function is used to both minimize the distortion measure while constraining the minimal radius of curvature in the tool path.
X