Criteria

Text:
Display:

Results

Viewing 1 to 30 of 107816
2016-12-21
Journal Article
2016-01-9082
Bradley Michael, Rani Sullivan, Dulip Samaratunga, Ratneshwar Jha
Polymer matrix composites are increasingly adopted in aerospace and automotive industries due to their many attributes, such as their high strength to weight ratio, tailorability, and high fatigue and durability performance. However, these materials also have complex damage and failure mechanisms, such as delaminations, which can severely degrade their strength and fatigue performance. To effectively and safely use composite materials in primary structures, it is essential to assess composite damage response for development of accurate predictive models. Therefore, this study focuses on determining the response of damaged and undamaged carbon epoxy beams subjected to vibration loadings at elevated temperatures. The Hilbert-Huang Transform (HHT) technique is used to analyze the beams’ modal response. The HHT shows potential in identifying the nonlinear damaged response of the beams.
2016-11-08
Technical Paper
2016-32-0062
Yusuke Miyata
Recently, large market of industrial machinery is formed across Asian countries due to the mechanization of industries. In China and India, where further economic growth is expected, tighter exhaust emissions regulations are phased in for industrial diesel engines with the rise of environmental awareness. On the other hand, high durability, low fuel consumption and low cost are earnestly requested for those engines. While diesel engines with mechanical direct fuel injection system have potential to meet their demands at high levels, it is difficult to achieve both low-fuel consumption and low-exhaust emissions.  To exhibit these performances, it is important to keep good condition of combustion even under high EGR rate. We adopted high pressure fuel supply pump, and concave fuel cam profile which realize high injection rate for promoting atomization of injected fuel.
2016-11-08
Technical Paper
2016-32-0061
Da Wang, Dingchao Qian, Bo Wang
This article summarized the development methods and technical experiences on Formula Student race car engines acquired by Jilin University during 2011 and 2015. This series of engines are all based on 600cc 4-cylinder motorcycle gasoline engines and are modified to turbocharged engine within the Formula Student technical regulations, in order to achieve higher power output, wider torque band as well as lower fuel consumption. During the development process, multiple researches have been conducted surrounding the turbocharging technology. These researches covered areas including the matching of the flow rate characteristics of the engine and the turbocharger, the design of intake and exhaust systems, research on the wastegate as well as its actuator, the selection and control of boost pressure as well as the design of the lubrication system on the turbocharger, etc.
2016-11-08
Technical Paper
2016-32-0064
Keiya Nishida, Takeru Matsuo, Kang Yang, Youichi Ogata, Daisuke Shimo
The injection amount per stage in the multiple injection strategy is smaller than the conventional single-stage injection. The research of the spray mixture formation and the combustion characteristics with a small injection amount is being meaningful. In this study, the effect of the injection amount (0.27mg, 0.89mg, 2.97mg) under 100MPa injection pressure and the effect of injection pressure (100MPa, 170MPa) under different injection amount (0.27mg, 2.97mg) on the spray and mixture formation characteristics were studied based on the vapor and liquid phase concentration distributions in the fuel spray by using the tracer LAS technique. In order to satisfy the requirements for the LAS test fuel, the tracer LAS technique was adopted. The spray was injected used a single-hole nozzle with a diameter 0.133mm into the high-pressure and high-temperature constant volume vessel.
2016-11-08
Technical Paper
2016-32-0074
Pradeep Ramachandra, Manohar Halahali, Prashanth Anantha
Personal mobility is evolving in the emerging markets, where the primary need for transportation is predominantly met with two wheelers. This reflects on the annual production volumes, which is forecasted to reach 145 million units by 2021. Around 28% of this volumes belong to electric 2wheelers from China and the remaining are predominantly ICE (Internal Combustion Engines). With the regulators across the globe enforcing stricter emission norms in order to improve the air quality, there is a need for technology to evolve towards harnessing the best energy efficiency using multiple topologies. However, considering that the majority of the 2 wheelers are used by middle and lower income groups, it is imperative that efficient topologies need to be made available at affordable costs. The authors attempt to decipher this need for personal mobility coupled with the stringent regulations.
2016-11-08
Technical Paper
2016-32-0063
Marc Cyrill Besch, April Nicole Covington, Derek Johnson, Nathan Fowler, Robert Heltzel
The aim of this investigation was to improve understanding and quantify the impact of exhaust gas recirculation (EGR) as an emissions control measure onto cyclic variability of a small-bore, single-cylinder, diesel-fueled compression-ignition (CI) power generation unit. Of special interest were how cycle-to-cycle variations of the CI engine affect steady-state voltage deviations and frequency bandwidths. Furthermore, the study strived to elucidate the impact of EGR addition onto combustion parameters, as well as gaseous and particle phase emissions along with fuel consumption. The power generation unit was operated over five discrete steady-state test modes, representative of nominal 0, 25, 50, 75, and 100% engine load (i.e. 0-484kPa BMEP), by absorbing electrical power via a resistive load bank. The engine was equipped with a passive EGR system that directly connected the exhaust and intake runners through a 4mm diameter passage.
2016-11-08
Technical Paper
2016-32-0078
Mark R. Mataczynski, Paul Litke, Benjamin Naguy, Jacob Baranski
Aircraft engine performance is degraded with increasing altitude according to the resultant reduction in air pressure, temperature, and density. One way to mitigate this problem is through turbo-normalization of the air being supplied to the engine. Supercharger and turbocharger components suffer from a well-recognized loss in efficiency as they are scaled down in order to match the reduced mass flow demands of small-scale Internal Combustion Engines. This is due in large part to problems related to machining tolerance limitations, such as the increase in relative operating clearances, and increased relative blade thickness. As Internal Combustion Engines decrease in size, they also suffer from efficiency losses owing primarily to thermal losses. This amplifies the importance of maximizing the efficiency of all sub-systems in order to minimize fuel consumption and enhance overall aircraft performance.
2016-11-08
Technical Paper
2016-32-0077
Roland Baar, Valerius Boxberger, Maike Sophie Gern
On a worldwide scale, turbocharged four-cylinder engines are the most used ones in automotive industries. Three-cylinder engine is a technical alternative because of its higher thermodynamic potential that is due to higher cylinder displacement. Following this trend, the interest in two-cylinder engines is growing. These do have special demands concerning uniformity and dynamics of oscillating masses and firing order, but also very different conditions for the turbocharger. With two-cylinder engines, the pulsating influence grows and changes the operation of the turbine. In this paper different boosting technologies are compared in small engine applications. Besides of turbochargers the potentials and limits of superchargers and electric chargers as well as their combinations are compared. These technologies show dissimilarities concerning power supply, operation range and efficiency, and these effects have different meaning in small engines.
2016-11-08
Technical Paper
2016-32-0009
Yuki Takamura, Takahiro Shima, Hirotaka Suzuki, Keito Agui, Akira Iijima, Hideo Shoji
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest as a combustion system that offers the advantages of high efficiency and low exhaust emissions. However, it is difficult to control the ignition timing in an HCCI combustion system owing to the lack of a physical means of initiating ignition like the spark plug in a gasoline engine or fuel injection in a diesel engine. Moreover, because the mixture ignites simultaneously at multiple locations in the cylinder, it produces an enormous amount of heat in a short period of time, which causes greater engine noise, abnormal combustion and other problems in the high load region. The purpose of this study was to expand the region of stable HCCI engine operation by finding a solution to these issues of HCCI combustion.
2016-11-08
Technical Paper
2016-32-0012
Zhimin Lin, Kotaro Takeda, Yuki Yoshida, Akira Iijima, Hideo Shoji
Homogeneous Charge Compression Ignition (HCCI) combustion have attracted much attention as a high efficiency and clean combustion system. However, it is difficult to control the ignition timing because there are no a physical means of ignition. In addition, it is difficult to expand the operating range due to the occurrence of misfiring at low loads and the occurrence of rapid combustion (HCCI knocking) accompanied by in-cylinder pressure oscillations at high loads. Therefore, it is important to reduce the pressure oscillations of HCCI combustion knocking for expanding the operating range to the high load region. This study focused on the rapid combustion in HCCI. A primary reference fuel (0 RON) was used as the test fuel. The influence of external exhaust gas recirculation (cooled EGR) on HCCI knocking was investigated. HCCI combustion flame behavior with pressure oscillations were visualized by using a two-stroke engine that allowed visualization of the entire bore area.
2016-11-08
Technical Paper
2016-32-0011
Keito Agui, Hirotaka Suzuki, Yuki Takamura, Akira Iijima, Hideo Shoji
This study focused on Homogeneous Charge Compression Ignition (HCCI) combustion, which is regarded both in Japan and abroad as a promising combustion system for achieving highly efficient and clean internal combustion engines. With HCCI combustion, the premixed mixture of fuel and air supplied to the cylinder is autoignited by piston compression. Because a lean premixed mixture is burned in HCCI combustion, emissions of nitrogen oxides (NOx) and particulate matter (PM) can be reduced simultaneously. Moreover, an HCCI system enables the engine to achieve higher thermal efficiency because it can operate stably at a sufficiently high compression ratio in a lean premixed combustion regime induced by autoignition. However, HCCI combustion has formidable unresolved issues. One is the difficulty of controlling the ignition timing owing to a lack of a physical means of igniting the mixture.
2016-11-08
Technical Paper
2016-32-0055
Carlos Alberto Romero, Luz Adriana Mejia, Yamid Carranza
A Design of experiments methodology was carried out to investigate the effects of compression ratio, cylinder head material, and fuel composition on the engine speed, fuel consumption, warm-up time, and emissions of a carbureted single cylinder air-cooled spark ignited engine. The work presented here is aimed at finding out the sensitivity of engine responses, as well as the optimal combination among the aforementioned parameters. To accomplish this task two cylinder heads, one made of aluminum and the second one of cast iron, were manufactured; an antechamber-type adapter for the spark plug to modify the combustion chamber volume was used, and two ethanol/gasoline blends containing 10 and 20 volume percent ethanol were prepared. Engine performance was evaluated based on the changes in engine speed at idle conditions. Regarding the exhaust gas emissions, the concentrations of CO2, CO, and HC were recorded.
2016-11-08
Technical Paper
2016-32-0015
Bernhard Schweighofer, Hannes Wegleiter, Michael Zisser, Paul Rieger, Christian Zinner, Stephan Schmidt
The partial electrification of the drivetrain permits a multitude of new control strategies like brake energy recuperation, engine start-stop operation, shifting of the engine working point, as well as in some situations pure electric driving. Overall this typically allows a reduction of fuel consumption and therefore of carbon dioxide emissions. During the development process of the vehicle various drivetrain configurations have to be considered and compared. This includes decisions regarding the topology - like the position of the electrical machine in the drivetrain (e.g. at the gearbox input or output shaft), as well as the selection of the needed components based on their parameters (nominal power, energy content of the battery, efficiency, …). To compare the chosen variants, typically the calculated fuel consumption for a given driving cycle is used.
2016-11-08
Technical Paper
2016-32-0060
Ashish Jain, Sahil Kapahi
A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the powertrain is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUM Lap software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modelled using 1D simulation on RICARDO Wave.
2016-11-08
Technical Paper
2016-32-0056
Qi-Jun Huang, Chia-Hong Chung, Yong-Fu Syu, Yuh-Yih Wu, Chao-Kai Li
Butanol is deemed as a potential alternative fuel for motor vehicle, but there are few studies about applying butanol in engine combustion. This paper focuses on application of butanol-gasoline blend fuel on scooter engine. In this research, different volume percentage of butanol-gasoline blend fuel, B10, B20, B40, B60, B80 and B100 are applied on 125cc scooter engine to conduct engine experiment, and higher than B60 blended fuel is declared as high concentration of butanol blended fuel. The test conditions are set at 4000 and 6000rpm under partial load and full load. After executing engine experiment, the engine performance, brake specific fuel consumption (BSFC), emissions and combustion analysis are discussed. Furthermore, viscosity and fuel spray test are carried out with high concentration of butanol. The engine experimental result shows that B20 fuels can increase engine performance under engine 4000 and 6000rpm.
2016-11-08
Technical Paper
2016-32-0079
Daisuke Fukui, Yoshinari Ninomiya
With the remarkable rise of gas price and the global air pollution, measures to improve fuel efficiency and reduce emission have become the urgent need in the motorcycle industry following automobile. For the improvement of the engine thermal efficiency that is one of those problems, there is a well-known fact that various research and development are continued from the past. We recognize that the coexistence of the high mobility and fuel efficiency performance of the Community-Based small motorcycles are demanded in the developed country not only developing countries. And we recognize that the coexistence of driveability and emission control of recreation and sports motorcycles is demanded. However, in the development of the engines for small motorcycles, due to differences in engine speed range, emission control, cost, infrastructure, we need some different approaches from the automobile engines which are full of advanced technologies.
2016-11-08
Technical Paper
2016-32-0084
Shinichi Okunishi, Ken Ogawa
Accurate measurement of air volume is one of the large problems in LPL-EGR system. Measurement of air is difficult, because the intake volume of LPL-EGR system from the EGR valve to combustion chamber is much larger than HPL-EGR. Equally, it is difficulties to measure the correct LPL-EGR rate. By a conventional method, the best ignition timing control is difficult. The measurement of the LPL-EGR rate by using intake O2 sensor has been developed. Around 0% of LPL-EGR rate, this technique is poor accuracy.There is not a use except the LPL-EGR rate measurement. We thought that it was preferable for application of the engine control to use a wide sensor. About the ignition timing control, MFB 50% feedback control is to enable optimum ignition timing control by using the cylinder pressure. We thought about engine control by using the cylinder pressure, and we examined the following application.
2016-11-08
Technical Paper
2016-32-0021
Stephen Gurchinoff
Thermoplastic bearing materials are being used in automotive transmission architectures where higher pressures and velocities are driving innovation. The benefits thermoplastics offer are high PV capable materials suitable to reduce NVH, increase design freedom while reducing design space, thermal insulation, reduce coefficient of friction, and improve wear resistance when compared to needle bearings. Expanding on the success in automotive may allow for these types of materials to be evaluated in marine lower units, CVT’s, pumps, and other small engine applications
2016-11-08
Technical Paper
2016-32-0018
Mrinmoy Kalita, Murugesu Muralidharan, Masilamani Sithananthan, Muthan Subramanian, Yogesh Kumar Sharma, Bhuvenesh Tyagi, Sarita Garg, Ajay Kumar Sehgal, Shankara Sri Venkata Ramakumar, Ramadoss Suresh
Indian Two-Wheeler Industry is the largest in the world with the annual growth rate more than 10percent year after year. More than 60% of gasoline production in India is consumed by two wheeler segment. Ever rising fuel demand and global concern on climate change have focused to develop energy efficient and eco-friendly vehicles. Several techniques such as engine design, efficient transmission and use of better quality of fuels and lubricants are applied world over to improve the efficiency of the vehicles. Low viscosity engine lubricant is one of the approaches which can be easily applied for better fuel economy. The lubricant requirement of motorcycles differs from that of passenger cars. The motorcycle engine oil is subject to both engine as well as wet clutch transmission system which operate under severe conditions.
2016-11-08
Technical Paper
2016-32-0016
Maryam Sadeghi Reineh, Faryar Jabbari
This papers aims at using Anti-windup augmentation to an existing high performance controller to increase the range of net-power that can be obtained from a solid oxide fuel cell. The power drawn by the fan/blower is kept limited by a software/controller enforced bound that acts similar to a saturation bound. Anti-windup augmentation is then used to ensure stability and recovery of performance. The behavior of the controller, particularly the effects of the anti-windup loops on the second actuator (cathode inlet temperature), is then investigated to evaluate the feasibility of the proposed approach.
2016-11-08
Technical Paper
2016-32-0044
Gaku Naoe
One of the issues involved in compression ignition combustion is the increase in combustion noise from engine mechanical systems caused by rapid combustion. When using natural gas of high ignition temperature in the fuel, the compression ratio is increased relative to gasoline, and combustion becomes more rapid. The present research pursues the issue of noise by clarifying the distinctive features of combustion noise through tests focused on the two topics of stroke bore ratio (S/B ratio), and ignition timing. In order to verify S/B ratio and in-cylinder pressure change rate, combustion noise was measured in five types of engine with the same displacement and the S/B ratio varying from 0.8 to 2.1. The test results seemed that the effect of input load reduction due to the smaller bore caused a reduction in combustion noise at the same in-cylinder pressure change rate.
2016-11-08
Technical Paper
2016-32-0046
Stephan Schneider, Marco Chiodi, Horst Friedrich, Michael Bargende
The proposed paper deals with the development process and initial measurement results of an opposed piston engine for the use in a Free Piston Linear Generator (FPLG). The FPLG, which is being developed at the German Aerospace Center (DLR), is an innovative internal combustion engine for the generation of electrical power. With its arrangement, the piston freely oscillates between the compression chamber of the combustion unit and a gas spring with no mechanical coupling like a crank shaft. A linear alternator converts the kinetic energy of the moving piston into electric energy. The virtual development of the novel combustion system is divided into two stages: One the one hand, the combustion system including e.g. a cylinder liner, pistons, cooling and lubrication concepts has to be developed.
2016-11-08
Technical Paper
2016-32-0001
Franz Winkler, Roland Oswald, Oliver Schoegl, Nigel Foxhall
Rotax high performance engines are used in many different BRP powersports applications. In several of these applications 2-stroke engines play an important role. The direct injection technology is a key technology for 2-stroke engines to fulfil both the customers’ request for high power and the environmental requirements concerning emissions and efficiency. As the load spectrum differs from one application to the other, it was interesting to find out if different injection technologies can answer the needs of different applications more efficiently regarding performance but also economic targets. Therefore, the results of the Rotax 600 cm³ E-TEC (direct injection system) engine are compared to the same base engine but adopted with the SDI (semi direct injection) technology and the LPDI (low pressure direct injection) technology. The comparison is done by a 17 points measurement program representing different engine speeds and load cases.
2016-11-08
Technical Paper
2016-32-0002
Yuki Yoshida, Kotaro Takeda, Zhimin Lin, Masanori Yamada, Akira Iijima, Mitsuaki Tanabe, Hideo Shoji
Improving the thermal efficiency of internal combustion engines requires operation under a lean combustion regime and a higher compression ratio, which means that the causes of autoignition and pressure oscillations in this operating region must be made clear. However, there is limited knowledge of autoignition behavior under lean combustion conditions. Therefore, in this study, experiments were conducted in which the ignition timing and intake air temperature (scavenging temperature) of a 2-stroke optically accessible test engine were varied to induce autoignition under a variety of conditions. The test fuel used was a primary reference fuel with an octane rating of 90. The results revealed that advancing the ignition timing under lean combustion conditions also advanced the autoignition timing, though strong pressure oscillations on the other hand tended not to occur.
2016-11-08
Technical Paper
2016-32-0006
Ran Amiel, Leonid Tartakovsky
This paper provides an overview of the effect of a flight altitude on knock occurrence in reciprocating SI turbocharged engines. It presents results of the computational study aimed at investigating reasons leading to knock occurrence and methods of alleviating the knock tendency of aircraft engines. Knock has been one of the key limiting factors in the development of IC engines since the first use of the technology more than a century ago. Aviation platforms are becoming increasingly widespread around the world, and turbochargers are frequently added to improve the performance of the platforms at high altitudes. Although a turbocharger provides the benefits of improved BSFC and a downsized engine, turbocharging can result in engine knock because of increasing the intake air temperature, due to a rise in the compression ratios as the air density drops.
2016-11-08
Technical Paper
2016-32-0005
Kotaro Takeda, Shimada Takashi, Yuki Yoshida, ZhiMin Lin, Akira Iijima, Hideo Shoji
One of the main issues of high efficient Spark Ignition (SI) engine is knocking. In addition, the extremely rapid combustion that occurs under a high load in an HCCI engine prevents the stable operating region from being expanded. It is known that abnormal combustion occurs in an HCCI engine accompanied by in-cylinder pressure oscillations resembling knock in spark-ignition (SI) engines. In this study, experiments were conducted in which images of SI and HCCI combustion were obtained using the same test engine and frame rate. A two-stroke engine that allowed visualization of the entire bore area was used in this study. In the visualization experiments, the condition in the cylinder was photographed directly with a high-speed camera through a quartz observation window installed in the top of the cylinder head. Photographs were taken at a speed of 54000 frames/s and a resolution of 256 x 256 pixels.
2016-11-08
Technical Paper
2016-32-0007
Kento Shimizu, Shuhei Takahata, Kenta Miura, Hideo Shoji, Akira Iijima, Toshimasa Utaka, Kazushi Tamura
Abnormal combustion experiments were conducted in which engine oil additives were mixed into the test fuel in order to investigate their influence on the occurrence of abnormal combustion. A four-stroke side-valve engine that allowed in-cylinder visualization of the combustion flame and light absorption measurements were used in the experiments. Different type of calcium-based engine oil additives were mixed into the primary reference fuel (PRF 50) at the same ratios at which they are found in ordinary automotive engine oil.
2016-11-08
Technical Paper
2016-32-0008
Balagovind Nandakumar Kartha, Srikanth Vijaykumar, Pramod Reddemreddy
Today, nations are in the path of low-emission transformation mandating stricter emission norms with periodic revisions. With the expected introduction of Bharath Stage VI (BS VI) for two wheelers in India by 2020, limitation in primary pollutants namely - Carbon Monoxide (CO), Total Hydro-Carbons (THC) and Nitrogen Oxides (NOx) are reduced by 50%, 75% and 85% respectively in comparison to the existing Bharath Stage IV. The original equipment manufacturers (OEMs) are identifying measures to improve the overall efficiency and raw emissions from the engine through strategies like multi-spark configurations, improved charge induction concepts, liquid cooling, lean combustion etc. With end user demands for performance, low end torque, high power to displacement ratio, quick acceleration and fuel efficiency, the balance with the emission regulation is expected to be challenging.
2016-11-08
Technical Paper
2016-32-0014
Amnon Eyal, Leonid Tartakovsky
This study examines the possibility of using methanol reforming products to feed a Homogenous charge compression ignition (HCCI) engine. By changing the composition of these products, one can manage the HCCI combustion process. These products are produced in an on-board reformer, which utilizes the energy of the exhaust gases to sustain endothermic reactions. The reactions include, in series, first dehydration of methanol to Dimethyl-Ether (DME) and H2O with support of γ-Al2O3 catalyst, and then a methanol steam reforming (SRM) process with support of a CuO/ZnO/Al2O¬3 catalyst. The two processes are separated from each other, i.e. in the first section only methanol dehydration occurs and in the second section only SRM process occurs. This is made possible due to the specific catalysts that were chosen. The DME, which is produced in the dehydration process, does not take a part in the SRM process.
2016-11-08
Technical Paper
2016-32-0019
David Weiss
In the early 1980's, some promising research and development efforts focused on powder metallurgy revealed that aluminum alloys containing 4 wt% cerium exhibit high temperature mechanical properties exceeding those of the best commercial aluminum casting alloys currently in production. Cerium oxide is an abundant rare earth oxide that is often discarded during the refining of more valuable rare earths such as Nd and Dy. Therefore, the economics are compelling for cerium as an alloy additive. Aluminum-cerium alloy components prepared via hot pressing and forging exhibited tensile strengths of 43 ksi at 450°F. This compares to typical tensile strengths of 10-26 ksi for Al-Cu and Al-Mg-Zn systems at that temperature.
Viewing 1 to 30 of 107816