Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 102053
Technical Paper
2015-01-01
Susan Sawyer-Beaulieu, Edwin K.L. Tam
Life-cycle assessments (LCAs) conducted, to date, of the end-of-life phase of vehicles rely significantly on assumed values and extrapolations within models. The end phase of vehicles, however, has become all the more important as a consequence of increasing regulatory requirements on materials recovery, tightening disposal restrictions, and the rapid introduction of new materials and electronics, all potentially impacting a vehicle’s efficacy for achieving greater levels of sustainability. This article presents and discusses selected research results of a comprehensive gate-to-gate life-cycle-inventory (LCI) of end-of-life vehicle (ELV) dismantling and shredding processes, constructed through a comprehensive and detailed case study, and argues that managing and implementing creative dismantling practices can improve significantly the recovery of both reusable and recyclable materials from end-of-life vehicles. Although the amount of parts and materials recovered and directed for reuse, remanufacturing or recycling may be as much as 11.6% by weight of the ELVs entering a dismantling process [1], greater rates of reuse and/or recycling may be achieved by the strategic management of the ELVs entering the dismantling process according to age.
Technical Paper
2014-11-11
Simone Vezzù, Carlo Cavallini, Silvano Rech, Enrico Vedelago, Alessandro Giorgetti
The deposition of thick, pore-free and high performances copper alloy matrix composite coatings is a topic of interest for several industrial applications such as friction materials, high mechanical resistance electrical contacts, and welding electrodes. This study investigates the opportunity to use cold spray for the deposition of CuCrZr/Al2O3 cermet coatings on 6060 aluminium alloys. The project’s aim is to investigate the feasibility of producing integral coolers on mechanical parts. This will make it possible to the design of high performance hybrid motorcycles more compact. Fused and crushed alumina and gas-atomized CuCrZr powder blends have been used as initial feedstocks, with compositional weight ratio of 65/35 and 80/20 (ceramic/metal). The deposition process and coating growth have been studied as a function of carrier gas temperature, exploring the range between 200°C and 750°C. Pure CuCrZr alloy coatings have been also deposited for comparison. The coatings have been characterized in terms of microstructure and morphology, coating microindentation hardness, adhesion to the Al alloy substrate, and cohesion.
Technical Paper
2014-11-11
Akshay Hegde
Valve train behaviour is one of the parameter which governs the performance of an engine. One of the ways to improve output power of naturally aspirated engines is by increasing its speed. However, the problem with high speed valve operation is a phenomenon called “Valve jump”, in which valve unexpectedly lift up and loses contact with cam surface. This happens because of insufficient stiffness of the spring. To have a precise control on valve events, spring force should be moderate enough to have a good control on valve operation. In the current project work, an existing engine valve train multi-body dynamics (MBD) model was developed in ADAMS/View and validated in terms of valve lift and spring dynamic load against actual engine test results. Engine testing was done in Spintron engine test bench. Progressive springs formed with variable pitch, having variable stiffness, were used in the valve train under consideration. Based on literature survey it was found that increasing the close coil ratio of the spring, increases its stiffness and results in reduced valve jump.
Technical Paper
2014-11-11
Tatsuhiko Sato, Hirotaka Kurita, Akemi Ito, Hideyuki Iwasaki
The frictional force generated between an actual monolithic aluminum cylinder block and a piston / a piston-ring in a firing mode was measured with using a newly developed floating liner device for the first case in the world. The improvement of fuel consumption is the most important issue for engine manufactures from the viewpoint of energy and environment conservation. The piston-cylinder system plays quite important role for the reduction of the engine friction. For the improvement of the frictional behavior of the piston-cylinder system, it is beneficial to observe and analyze the frictional waveforms during an engine operation. In order to meet the above-mentioned demand, the renewed floating liner device was developed. In the newly developed floating liner device, the actual cylinder block itself was used as a test specimen, whereas a thin-walled cylindrical sleeve should be used as the test specimen in the conventional floating liner device. The measured single cylinder was an aluminum monolithic type made of hypereutectic Al-17Si alloy using a high pressure die casting process.
Technical Paper
2014-11-11
Matthew Smeeth
Rolling contact fatigue is a particular type of fatigue that occurs in heavily loaded, non-conformal contacts, such as gears and rolling element bearings. It is primarily a failure mode associated with repeated cyclic loading that generates high local Hertzian pressures, leading to local plastic deformation and substantial surface or sub surface stress. This in turn leads to crack formation and propagation. In some instances this results in sudden and often critical mechanical failure of contacting parts. This failure mode can, to a certain degree, be controlled by the appropriate choice of lubricant; in terms of both the physical and chemical properties of the films formed at the surface. A three contact disc machine has been used to examine the rolling contact fatigue of motorcycle lubricants in such heavily loaded contacts. Three counterface test rings of equal diameter (54mm) are mounted 120° apart with a smaller (12mm diameter) test roller in the centre. Using this configuration, a large number of contact cycles are possible in a short period of time (up to one million per hour), which greatly accelerates the testing test.
Technical Paper
2014-11-11
Koorosh Khanjani, Jiamei Deng, Andrzej Ordys
Controlling Variable Coolant Temperature in Internal Combustion Engines and Its Effects on Fuel Consumption Koorosh Khanjani ; Roehampton Vale Campus, Kingston University, Friars Avenue, London SW15 3DW; K1155703@kingston.ac.uk; Tel: +44 (0)208 417 4730; Jiamei Deng ; Roehampton Vale Campus, Kingston University, Friars Avenue, London SW15 3DW; J.Deng@kingston.ac.uk; Tel: +44 (0)208 417 4712; Andrzej Ordys ; Roehampton Vale Campus, Kingston University, Friars Avenue, London SW15 3DW; A.Ordys@kingston.ac.uk; +44 (0) 208 417 4846; Abstract: Increasing the efficiency and durability of internal combustion engines is one of the major concerns of engineers in development of modern road vehicles. Emission legislations are becoming stricter each year forcing manufacturers to deploy sophisticated engine control strategies to transfer more of the fuel chemical energy into power output. Internal combustion engines have now been equipped with electronic engine management control units which consist of precise measurements and performance by means of various sensors and actuators.
Technical Paper
2014-11-11
Klaus Stuhlmüller
In a microcontroller-operated ignition process, the combustion is dependent on three important criteria: Spark burn duration, ignition voltage, and ignition spark energy. These criteria must be adapted exactly to the engine's individual requirement profile to ensure optimal combustion. In each operating state and operating environment, optimum ignition is ensured by continuously analyzing sensor values. Engine manufacturers continue to be faced with the challenge of ensuring that the machine runs as smoothly and quietly as possible. Increased spark duration and higher energy of the ignition spark enable improved combustion of the gasoline-air mixture in the combustion compartment. This article describes an electrical ignition process using an array of multiple coils and a magnetic generator that is rotating in sync with the machine. During this process the magnetic field temporarily flows through the coils and generates a sequence of magnetic flow variations per rotation. This induces corresponding half-waves of alternating voltage in the coils of the ignition module.
Technical Paper
2014-11-11
Horizon Walker Gitano, Ray Chim, Jian Loh
Recent concern over air quality has lead to increasingly stringent emissions regulations on ever smaller displacement engines, resulting in the application of Electronic Fuel Injection to the 100cc-200cc class 2-wheelers in many countries. In the pursuit of ever smaller and less expensive EFI systems, a number of unique technologies are being explored, including resistive type oxygen sensors. In this paper we investigate the application of a small resistive oxygen sensor to a small motorcycle EFI system. Measurements of the exhaust system temperatures, and Air/Fuel Ratio ranges are carried out, and compared to the sensors response over this range to create an estimate of the sensors in-use performance. Actual sensor and temperature measurements are then compared to both a standard zirconia switching type oxygen sensor, and a wide-band oxygen sensor. Results are analyzed and indicate that the resistive type oxygen sensor should be capable of allowing the EFI controller to successfully control the vehicles AFR in all operating modes with a faster “light off” time, and lower overall current draw when compared to the standard heated zirconia sensor.
Technical Paper
2014-11-11
Takeshi otaka, Kazuyo Fushimi, Eiji Kinoshita, Yasufumi Yoshimoto
Biofuel, such as biodiesel and bio-alcohol, is a renewable, biodegradable and nontoxic alternative fuel with the potential to reduce CO2 emissions. Biodiesel produced from vegetable oils and animal fats is utilized as an alternative diesel fuel. On the other hand, bio-ethanol produced by fermentation from various organic substances, such as agricultural crops and garbage, is utilized as an alternative fuel for SI engine. Bio-butanol also can be made by fermentation, but it is different fermentation, Acetone-Ethanol-Butanol (ABE) fermentation. It is possible to use alcohol for diesel engines with higher thermal efficiency if alcohol is blended with high cetane number fuels, such as conventional diesel fuel and biodiesel. Butanol has higher net calorific value and cetane number compared with ethanol. Therefore, butanol may be better alternative diesel fuel or diesel fuel additive than ethanol. Also, biodiesel has higher kinematic viscosity and boiling point compared with conventional diesel fuel.
Technical Paper
2014-11-11
Diego Copiello, Ze Zhou, Gregory Lielens
This paper addresses the numerical simulation of vehicle exhaust system noise using an innovative transfer matrix method (TMM) supporting high order duct modes combined with finite element method (FEM). Exhaust systems usually consist of complex volume components (mufflers, catalyzers ...) connected by simpler pipes. The noise propagation through such systems can be efficiently addressed by means of the Transfer Matrix Method (TMM). The TMM is an analytical method which allows assessing efficiently the acoustic behavior of an entire exhaust line by combining acoustic transfer matrices of each of its constitu¬ent sub-components (i.e., volume components: mufflers, catalyzers, etc.). The main assumption of this method is that within the exhaust line only the plane wave is propagating and thus the transfer matrices could be computed analytically. On the contrary, this assumption leads to a strong limitation in the maximum frequency of analysis which is the cut off frequency of the first higher order mode present in any one of the exhaust line components.
Technical Paper
2014-11-11
Hideyuki Ogawa, Gen Shibata, Yuhei Noguchi, Mutsumi Numata
Simultaneous reductions of NOx and particulate emissions as well as the improvements in the thermal efficiency and the engine performance with emulsified blends of water and diesel fuel are reported. A reduction in combustion temperature and promotion of premixing with larger ignition delays due to vaporization of the water in the fuel has been suggested as the mechanism. However, details of the combustion process and the mechanism of the emission reduction is not fully elucidated. In this research diesel like combustion of emulsified blend of water and diesel fuel in a constant volume chamber vessel was visualized with high speed color video and analyzed with a 2-D two color method. The shadowgraph images were also recorded and the rate of heat release was obtained from pressure data in the combustion chamber. An emulsified blend of water and diesel fuel (JIS. No. 2) with 26 vol% water and 4 vol% surfactant was used as the test fuel, and the diesel fuel in the emulsion without water and the surfactant was used as a reference.
Technical Paper
2014-11-11
Toshio Watanabe, Hiroki SAKAMOTO
It is well known that for high-speed planing craft with outboard motor, cavitation occurs around the lower unit(gear case) and propeller blades. There are several kinds of cavitation; (1)Tip vortex cavitation (2)Hub vortex cavitation (3)Sheet cavitation (4)Cloud cavitation (5)Root cavitation Among them ,Cloud cavitation and root cavitation lead to erosion damage on the surface of lower unit and propeller. To prevent from poor appearance or performance deterioration of outboard motor by erosion damage, It is important to simulate the occurrence of erosion in advance at the design stage. In this paper, we propose the new method of predicting the area that erosion occurs using CFD (computational fluid dynamics). In order to simulate cavitation phenomena, basically, we have implemented the CFD analysis using the barotropic model. But the area that cavitation occurs does not correspond to the position of erosion damage. Therefore, we focus on the bubble nucleus which is due to cavitation. First, we predict cavitation phenomena on the basis of single-bubble motion with Rayleigh plesset model.
Technical Paper
2014-11-11
Stefania Falfari, Claudio Forte, Federico Brusiani, Gian Marco Bianchi, Giulio Cazzoli, Cristian Catellani
Faster combustion and lower cycle-to-cycle variability are the two mandatory tasks in the naturally aspirated engines for lowering the emission levels and for increasing the efficiency. Generally speaking the promotion of a stable and coherent tumble structure is largely believed in literature to enhance the in-cylinder turbulence accelerating combustion process. In small PFI engine layout and weight constraints limit the adoption of more advanced concepts. The turbulence generation process is strictly related to the tumble vortex deformation process: during the compression stroke the tumble vortex is deformed, accelerated and its breakdown in smaller eddies leads to the turbulence enhancement process. The prediction of the final level of turbulence for a particular engine operating point is crucial during the engine design process because it represents a practical comparative means for different engine solutions. The tumble ratio parameter value represents a first step toward the evaluation of the turbulence level at ignition time, but it has an intrinsic limit.
Technical Paper
2014-11-11
Naoya Ito, Akira Terashima, Junki Sahara, Takashi Shimada, Masanori Yamada, Akira Iijima, Tomohiko Asai, Mitsuaki Tanabe, Koji Yoshida, Hideo Shoji
Lean burn is a very effective way to substantially improve the thermal efficiency of internal combustion engines. A major issue involved in applying a lean-burn process to a spark-ignition engine is to secure stable ignition and combustion. Homogeneous Charge Compression Ignition (HCCI) combustion is one technology for accomplishing rapid combustion of a lean premixed air-fuel mixture. However, because the mixture is autoignited by piston compression in an HCCI engine, controlling the ignition timing is a crucial issue. In addition, another issue of HCCI engines is the narrow range of stable operation owing to the occurrence of misfiring at low loads and extremely rapid combustion at high loads. As an approach to resolving these issues, this study focused on the use of low-temperature plasma as an ignition technique for inducing stable autoignition in an HCCI engine. Specifically, the use of a streamer discharge was investigated for controlling HCCI ignition and combustion. A continuous streamer discharge was generated in the center of the combustion chamber of a 2-stroke engine that allowed visualization of the entire bore area.
Technical Paper
2014-11-11
Keisuke Mochizuki, Takahiro Shima, Hirotaka Suzuki, Yoshihiro Ishikawa, Akira Iijima, Koji Yoshida, Hideo Shoji
Homogeneous Charge Compression Ignition (HCCI) has attracted a great deal of interest as a combustion system for internal combustion engines because it achieves high efficiency and clean exhaust emissions. However, HCCI combustion has several issues that remain to be solved. For example, it is difficult to control engine operation because there is no physical means of inducing ignition. Another issue is the rapid rate of heat release because ignition of the mixture occurs simultaneously at multiple places in the cylinder. The results of previous investigations have shown that the use of a blended fuel of DME and propane was observed that the overall combustion process was delayed, with that combustion became steep when injected propane much. This study focused on expanding the region of stable engine operation and improving thermal efficiency by using supercharging and blended fuels. The purpose of using supercharging were in order to moderated combustion. In addition, the purpose of using blended gaseous fuels were find out effective use of gaseous fuels.
Technical Paper
2014-11-11
Federico Brusiani, Gian Marco Bianchi, Cristian Catellani, Marco Ferrari, Paolo Verziagi, Dario Catanese
Most of the handheld application are equipped with a Two stroke SI engine. The advantage of this engine are known but one of the problem of this applications is to design air cooling system with high efficiency. One of the main problem to cool the two stroke engine for hand held applications like chainsaw, brush cutter, blower and so on is obtain compact design of the application but in the mean time to have the correct air flow in all conditions. This paper describes a CFD methodology to optimize the air flow around the two stroke engine and identify the potential improvement of this system to increase the cooling efficiency.
Technical Paper
2014-11-11
Nadeem Yamin, Abhishake goyal
Fuel cells are a promising energy source on account of their high efficiency and low emissions. Proton Exchange Membrane fuel cells (PEMFC) are clean and environmentally-friendly power sources, which can become future energy solutions especially for transport vehicles. They exhibit good energy efficiency and high power density per volume. Working at low temperatures (<90 0C), hydrogen fueled proton exchange membrane fuel cells (PEMFCs) are identified as promising alternatives for powering autos, houses and electronics. At the heart of the PEM fuel cell is the membrane electrode assembly (MEA). The MEA consists of a proton exchange membrane, catalyst layers, and gas diffusion layers (GDL). However, it is believed that PEMFC are not competitive enough to rechargeable lithium ion battery with respect to price because of the rare metal used such as platinum in it. Presence of platinum in PEM fuel cells is one of the reasons why fuel cells are excluded from commercialization. Therefore, reducing the amount of platinum used in fuel cells is very important for their commercialization.
Technical Paper
2014-11-11
Sei Takahashi, Hideo Nakamura, Makoto Hasegawa
The International Standard ISO26262 “Road vehicles - Functional safety” was published in 2011. Safety is one of the key issues of future automobile development. System safety is achieved through a number of safety measures, which are implemented in a variety of technologies. ISO26262 provides an automotive-specific risk-based approach and uses ASILs to specify applicable requirements so as to avoid unreasonable residual risk. The International Standard ISO26262 divides the Automotive Safety Integrity Levels (ASIL) into four stages (from level A to D). In this paper we consider the suitable determination of the Motorcycle Safety Integrity Levels (MSIL) when the ISO26262 is applied to motorcycles. We will show that an unreasonable risk area for motorcycles becomes smaller when compared with that of an automobile for the following two reasons. (1) The seating capacity of a motorcycle is less than that of an automobile, and thus the damage from a motorcycle accident is also smaller than those of automobile accidents.
Technical Paper
2014-11-11
Alex K. Rowton, Joseph Ausserer, Marc D. Polanka, Paul Litke, Keith Grinstead
As internal combustion engines (ICEs) decrease in displacement, their cylinder surface area to swept volume ratio increases. Examining power output of ICEs with respect to cylinder surface area to swept volume ratio shows that there is a dramatic change in power scaling trends at approximately 1.5 cm-1. At this size, thermal quenching becomes the dominant thermal loss mechanism and performance and efficiency characteristics suffer. Furthermore, small ICEs (>1 cm-1) have limited technical performance data compared to ICEs in larger size classes. Therefore, it is critical to establish accurate performance figures for a family of geometrically similar engines in the size class of approximately 1.5 cm-1 in order to better predict and model the thermal losses as well as other phenomena that contribute to lower efficiencies in small ICEs. The engines considered in this scaling study were manufactured by 3W Modellmotoren, GmbH. In particular, they are the 3W-28i, 3W-55i, and 3W-85Xi which have a cylinder surface area to swept volume ratio of 1.81 cm-1, 1.46 cm-1, and 1.28 cm-1 respectively.
Technical Paper
2014-11-11
Ludek Pohorelsky, Pavel Brynych, Jan Macek, Pascal Tribotte, Gaetano De Paola, Cyprien Ternel
The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831.Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on 2 cylinder 2-stroke 0.73L 45kW diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT). New simulations results recommend VNT as it offers a higher potential to reduce BSFC with increase power and low end torque output than the original matching.
Technical Paper
2014-11-11
Daniele Barbani, Niccolò Baldanzini, Marco Pierini
Motorcycle accidents are a serious road safety issue in the European Union (EU). Several projects to increase motorcycle safety were funded by the EU within the FP7 (Seventh Frame Program). Many others are likely to be funded within H2020 (Horizon 2020) as well as by national projects of each member state. In this context, numerical simulations play a strategic role since they can be a powerful tool to simplify, assist and speed up the work of the engineers. During the last years, the authors have presented the development and validation of FE models for complete crash test scenarios (i.e. motorcycle with an anthropometric test dummy that impacts against a car) and their use to evaluate head and neck injuries. During the validation phase the authors observed some variability in the results. While variability of the input parameters is a fact in real world crash test, the extent of the variability in the results has to be estimated and assessed in order to improve the design process of safety devices.
Technical Paper
2014-11-11
Kenichi Morimoto
This study describes methods to explain the relationship between the motorcycle specifications and the shimmy phenomenon. Statistical approaches were used presuming the analysis being based on the multibody dynamics simulation having a high degree of freedom to precisely simulate actual motorcycle. There are a number of past attempts to clarify the relationship between the motorcycle specifications and the shimmy phenomenon. One of such efforts is based on the equation of motion. Although such a method is suitable when simply analyzing motions in a fundamental structure, when the number of degrees of freedom is large, generally a practical method cannot be found because it is extremely difficult to deriver an equation of motion. In the meantime, although the author et al. have analyzed shimmy using such multibody dynamics simulation models, the findings are useful only for simulation of performance difference among a number of motorcycles. In this study, we conducted researches taking three steps; (1) extract factors significantly affecting shimmy from motorcycle specifications, (2) explain how a change of motorcycle specifications affects shimmy, and (3) measure performance of a number of motorcycles having various specification.
Technical Paper
2014-11-11
Gokul Meenakshi Sundaram, Shankapal S R PhD, Nagarjun Reddy M.
A well rated vehicle should have good handling (maneuvering) and stability characteristics. In India, three wheeled vehicle (Auto –rickshaws) play a major role in low cost transportation and thus there is a huge population of them, particularly in urban areas. Auto -rickshaws are low speed vehicles and can easily be maneuvered in city narrow lanes. Hence these vehicles should exhibit stability as well as handling well at low speeds. Stability of vehicle is affected while maneuvering, and maneuvering (handling) gets affected due to wobbling of front wheel. The present work focuses on improving wobbling of a three wheeled vehicle. The problem was approached by carrying out a literature review and identifying the wobbling control equation. Parametric studies were done through simulation to understand their effect on wobbling. The wobbling frequency of front structure of three wheeled vehicle found to be 4 Hz corresponding to a vehicle speed of 20km/h. It was essential to reduce the wobbling frequency corresponding to a speed lower than 10 km/h.
Technical Paper
2014-11-11
Alessandro Franceschini, Emanuele Pellegrini, Raffaele Squarcini
Nowadays the challenge in design auxiliary device for automotive small engine is focused on the packaging reduction and on the increase of the performances. This requirements are in contrast to each other and in order to fulfil the project specifications, new and more refined design tools and procedures need to be developed. This paper presents a calculation loop developed by Pierburg Pump Technology Italy S.p.a. (PPT). It supports the design of a variable displacement oil pump component for engine applications. The work is focused on the fatigue life evaluation of a joint, which transmits the drive torque from the engine to the oil pump. The aim of the procedure is to calculate the onset of the surface fatigue phenomenon in the hexagonal joint which drives the oil pump, taking into account the axes misalignment and the flat to flat clearance. The study has involved several matters, experimental measures, CFD, MBA and FEM analyses. A calculation procedure has been set up in order to consider all the necessary loads applied on the joint.
Technical Paper
2014-11-11
Manikandan T, S Sarmadh Ameer, A Sivakumar, Samaraj Dhinagar
The proposed paper is on electrical energy conservation in a two wheeler. Electrical energy generation adds a maximum of 10% excess load torque on an engine and hence saving electrical energy would ultimately reduce the consumption of fuel. Load Control Module is a single intelligent device which is placed in between electrical energy generation and consumption. The Module controls and distributes energy to the corresponding loads depending on parameters like battery voltage, engine RPM, overhead light illumination levels and load usage time. The Module prioritizes battery charging for maintaining the life of the battery. The Module has a microcontroller and it is programmed with algorithm for prioritization and energy distribution with respect to input conditions. A vehicle fitted with the Load Control Module was tested in city driving cycle (CDC) condition as per ARAI (Automotive Research Association of India) standard and it was found that the electrical loading decreased to about 30% when compared to vehicle with uncontrolled loading.
Technical Paper
2014-11-11
Juergen Tromayer, Gerd Neumann, Marcus Bonifer, Rainer Kiemel
Looking at upcoming emission legislations for two-wheelers, it is quite obvious that the fulfilment of these targets will become one of the biggest challenges within the engine development process. The gradual harmonization of emission limits for two-wheelers with existing automotive standards will subsequently lead to new approaches regarding mixture preparation and exhaust gas aftertreatment. Referring to these future scenarios, the authors want to demonstrate the possible achievements by the application of state of the art technology to a standard small capacity two-wheeler engine being representative for the current market situation. After choosing a suitable test carrier, which has already been equipped with EFI components including an oxygen sensor for λ=1 operation mode, a basic injection system calibration was used to optimize the combustion process. Based on this setup, a variable exhaust system was manufactured to be able to integrate different catalyst configurations. Thus, the possibility for investigations on the optimization of exhaust gas aftertreatment was given.
Technical Paper
2014-11-11
Sayaka Yasoshina, Ryo Saito
With environmental issues such as global warming getting acute, the demand of engine exhaust gas emission reduction is increasing. The purpose of this study is the reduction of exhaust gas emissions for small size generators by using after-treatment device. The requirement of small size generators are portability, so they must be lightweight and compact. After-treatment device should be housed in the compact package. And sometimes generators are used near a house, so CO discharge amount should be a little under the condition of fuel rich mixture for high specific power. To meet these conditions, a catalytic converter with secondary air induction is adopted. Secondary air is used for oxidization of CO. However before this study, sufficient amount of secondary air couldn’t be inducted because of the shortage of minus pressure in exhaust pipe which caused by high-load operating and the shortness of an exhaust pipe. But high-load operating is inevitable in generator and adoption of a long exhaust pipe is impossible to compact casing.
Technical Paper
2014-11-11
Luigi Allocca, Alessandro Montanaro, Rita Di Gioia, Giovanni Bonandrini
In the next future, improvements of direct injection systems for spark-ignited engines are necessary for the potential reductions in fuel consumptions and exhaust emissions. The admission and spread of the fuel in the combustion chamber is strictly related to the injector design and performances, such as to the fuel and environmental pressure and temperature conditions. In this paper the spray characterization of a GDI injector under normal and flash-boiling injection conditions has been investigated. A customized sensing of the injector nose permitted the temperature control of the nozzle up to 90 °C while a remote-controlled thermostatic device allowed the fuel heating from ambient to 120 °C. An axially-disposed, 0.200 mm in diameter, single-hole injector has been used with l/d ratio equal to 1 and static flow@100 bar: 2.45 g/s, using iso-octane as mono-component fluid. A 1.0 ms duration single pulse strategy has been adopted at the injection pressure of 10 MPa. The spray evolved in a quiescent optically-accessible vessel pressurize at 0.05, 0.1 and 0.3 MPa at ambient temperature of the gas (N2).
Technical Paper
2014-11-11
Akiko Tanaka, Ikue Sato
Southeast Asian Nations are large scale markets for motorcycles and the market size is still growing. Moreover, the volume of plastic parts used for those motorcycles is increasing with growing popularity of scooter-type motorcycles. Accordingly, decorative features applied for plastic coverings are increasingly important to enhance the attractiveness of exterior designs of those motorcycles. Under these circumstances, we had adopted the magnetically-formed decorative painting and applied to a mass-production motorcycle model sold in Thailand in 2008. The magnetically-formed decorative painting is the method in which the designed patterns are formed by painting the material that contains flakes movable along with the magnetic lines of force, while applying an auxiliary attachment to the backside of the parts for generating magnetic fields, such as magnetic sheet trimmed to fit the shape of ornamenting designs. The magnetically-formed decorative painting offers three-dimensional appearance even though its actual surface has no protuberances or dents.
Technical Paper
2014-11-11
Sara Gronchi, Raffaele Squarcini
In recent years, the automotive industry, in case of both small and large size engine, is experiencing different technological and scientific levels of investigation thanks to the new market requests. For example, many different aspects should be evaluated in volumetric oil pumps: flow rate, back flow, filling chamber, pressure ripples and so on. All these features are fundamental fluid dynamic outputs, each aimed at defining a different aspect of the pump. For this reason, each of them requires different levels of precision. Focusing on the hydraulic pressure ripples calculation, several levels of accuracy are required in order to define the pressure profile according to the type of analysis for which you want to use it. By noise emission, as in this case, where the hydraulic load is the main input , the calculation should necessarily be a high performance fluid dynamic simulation. In this way it is possible to validate the pressure signal calculated with the presence of high frequencies and higher pump orders as in the experimental one so that the input for the numerical and experimental methodology can be compared.
Viewing 1 to 30 of 102053