Criteria

Text:
Display:

Results

Viewing 1 to 30 of 110593
2017-10-24
Journal Article
2017-01-9380
Jan-Hubert Wittmann, Lars Menger
Current regulatory developments aim for stricter emission limits, increased environmental protection and purification of air on a local and global scale. In order to find solutions for a cleaner combustion process, it is necessary to identify the critical components and parameters responsible for the formation of emissions. This work provides an evaluation process for particle formation during combustion of a modern direct injection engine, which can help to create new aftertreatment techniques, such as a gasoline particle filter (GPF) system, that are fit for purpose. With the advent of “real driving emission” (RDE) regulations, which include market fuels for the particulate number testing procedure, the chemical composition and overall quality of the fuel cannot be neglected in order to yield a comparable emission test within the EU and worldwide.
2017-10-24
Journal Article
2017-01-9378
Eric Kurtz, Christopher J. Polonowski
Abstract The design of modern diesel-powered vehicles involves optimization and balancing of trade-offs for fuel efficiency, emissions, and noise. To meet increasingly stringent emission regulations, diesel powertrains employ aftertreatment devices to control nitrogen oxides, hydrocarbons, carbon monoxide, and particulate matter emissions and use active exhaust warm-up strategies to ensure those devices are active as quickly as possible. A typical strategy for exhaust warm-up is to operate with retarded combustion phasing, limited by combustion stability and HC emissions. The amount of exhaust enthalpy available for catalyst light-off is limited by the extent to which combustion phasing can be retarded. Diesel cetane number (CN), a measure of fuel ignition quality, has an influence on combustion stability at retarded combustion phasing. Diesel fuel in the United States tends to have a lower CN (both minimum required and average in market) than other countries.
2017-10-24
Journal Article
2017-01-9377
Senthil Ramalingam, Silambarasan Rajendran
Abstract Biodiesel as an alternative diesel fuel prepared from vegetable oils or animal fats has attracted more and more attention because of its renewable and environmental friendly nature. Many recent studies shows that 20% proportion of biodiesel-diesel blend (B20) can substantially reduce the hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. However, there is a slight increase in NOx emission for B20 than that of diesel and it was a barrier to market expansion. The addition of antioxidant additives was the most effective method to mitigate the NOx emission. Hence, in this paper experimental investigation has been carried out to mitigate the NOx emission in Annona biodiesel (A20) operated diesel by addition of antioxidant additives. The antioxidant additives such as p-phenylenediamine, A-tocopherol acetate and L-ascorbic acid were used in the present investigation. In recent years Annona biodiesel has been considered as potential novel renewable energy source in India.
2017-10-08
Technical Paper
2017-01-2219
Xihui Wang
Conventional heat transfer fluids used for cooling fluids in vehicle cooling water jacket have relatively poor heat transfer performance.One method for enhance heat transfer in cooling-jacket uses nanofluids. Nanofluids have heat transfer enhancement merits .In the present study, the numerical simulation on Fe3O4 nanofluid flow in cooling water jacket of Gasline direct injection engine wax performed using computational fluid dynamics ( CFD) software FLUENT. The heat transfer coefficient of nanofluids was calculated and verified by experiment. Fe3O4 nano-particles were used in mixture of water/ethylene glycol as a base fluid. The thermal performance of the nanofluid was studied, also the thermal performance of a cooling-jacket was studied with CFD software. The simulation was performed for different volumetric concentrations of(1%,2%,5%) nanofluids of different engine speeds.
2017-10-08
Technical Paper
2017-01-2379
Qian Feng, Shu Shen, Mengliang Li, Zhijun Li, Kongjian Qin, Diming Lou, Jiguang Wang, Xiyu Fang
Recent toxicological and epidemiologic studies have shown that diesel emissions have been a significant toxic air contaminant. Catalyzed DPF (CDPF) not only significantly reduce the PM mass emissions (>90%), but also further promote carrier self-regeneration and oxidize more harmful gaseous pollutants by the catalyst coated on the carrier. However, some ultrafine particles and potentially harmful gaseous pollutants, such as VOCs species, originally emitted in the vapor-phase at high plume temperature, may penetrate through the CDPF filter. Furthermore, the components and content of catalyst coated on the CDPF could influence the physicochemical properties and toxicity intensity of those escaping ultrafine particles and gaseous pollutants. In this work, (1) we investigated the influence of precious metal content as a variable parameter on the physicochemical properties and catalytic activities of the small CDPF samples.
2017-10-08
Technical Paper
2017-01-2420
Bertrand Kerres, Andreas Cronhjort, Mihai Mihaescu, Ola Stenlaas
On-engine surge detection could help in reducing the safety margin towards surge, thus allowing higher boosting pressures and ultimately low-end torque. In this paper, experimental data from a truck turbocharger compressor mounted on the engine is investigated. A short period of compressor surge is provoked through a sudden, large drop in engine load. The compressor housing is equipped with knock accelerometers. Different signal treatments are evaluated for their suitability with respect to on-engine surge detection: the signal root mean square, the power spectral density in the surge frequency band, the recently proposed Hurst exponent, and a closely related concept optimized to detect changes in the underlying scaling behavior of the signal. For validation purposes, a visual observation of the air filter vibrations are also used to diagnose surge.
2017-10-08
Technical Paper
2017-01-2216
Yumin Fu
This document presents the development of a methodology for detecting rough road using the frequency analysis of the instantaneous engine speed signal. Combustion diagnosis (misfire detection) is enforced by EOBD/OBD II requirements, and eliminating the rough road driving affect on the diagnosis is critical for getting a robust misfire detection performance, especially for crankshaft speed based misfire diagnosis method. Although some kind of sensor is often used to identify that vehicle is traveling on rough road, the sensor less rough road monitor method is still more attractive for OEM to reduce cost, and some approaches have been developed past for the aim. The new approach presented here is based on the frequency domain analysis of engine speed characteristic excited by rough road traveling, and thus the frequency energy distribution comparison with public road driving and misfire introduced operation condition.
2017-10-08
Technical Paper
2017-01-2235
Ting Liu, Fuyuan Zhang, Yuedong Chao, Zongjie Hu, Liguang Li
EGR is thought to be another technique to improve gasoline engine fuel economy and emissions. In order to investigate the impacts of recirculated exhaust gas temperature on gasoline engine combustion and emissions, experimental study was conducted on a turbocharged PFI gasoline engine. The engine was equipped with a high pressure water-cooled EGR system, in which different EGR temperature was realized by using different EGR coolant. One way is using the room temperature civil water named LT-EGR (Low temperature EGR), and another way is to use hot engine coolant named HT-EGR (High temperature EGR). Therefore, the recirculated exhaust gas temperature after EGR cooler of LT-EGR is generally lower than that of HT-EGR. The engine ran at 2000rpm and 3000rpm, and the BMEP varied from 0.2MPa to 1.0MPa. At each operating point, there were three conditions: without EGR, 10% LT-EGR, 10% HT-EGR.
2017-10-08
Technical Paper
2017-01-2273
Xiaokun Nie, Wanhua Su
A numerical simulation was performed to investigate the pilot ignited natural gas combustion process in a direct injection natural gas engine. Various mixture distribution characteristics were compared in terms of the evolution of mixture equivalent ratio distributions and mixture concentration stratifications around top dead center (TDC). Based on above, the pilot injections were specially designed to investigate ignition core formation and its effects on natural gas combustion process. The result shows that pilot ignition sites have great impacts on pilot fuel ignition process and natural gas combustion process. The pilot ignition site on the region with rich NG/Air mixture is disadvantageous to the pilot fuel ignition due to a lack of oxygen, which is not beneficial to ignition core formation.
2017-10-08
Technical Paper
2017-01-2372
Yoshimitsu Kobashi, Shun Oooka, Lin Jiang, Jun Goto, Hideyuki Ogawa, Gen Shibata
To monitor and evaluate the emission-related components/systems and to determine the presence of malfunction or deterioration that can affect emissions, on-board diagnostics (OBD) is required by current regulations. With respect to the diesel particulate filter (DPF), a pressure drop across the DPF is monitored by the OBD since the pressure drop is approximately linear in particulate matter (PM) load and useful for evaluation. However, it is known that a sudden decrease in the DPF pressure drop is taken place under cold start conditions and the OBD misses the diagnosis. Although this seems to be caused by the water condensed in the exhaust pipe, no detailed mechanism has been obtained so far. The present study established an experimental system that can reproduce a rapid increase of the exhaust gas flow under cold start conditions and to control the amount of water supplied into the DPF. The sudden decrease in the DPF pressure drop was taken place by the water in this system as well.
2017-10-08
Technical Paper
2017-01-2302
Tobias Knorsch, Dmitrii Mamaikin, Philippe Leick, Philipp Rogler, Jin Wang, Zhilong Li, Michael Wensing
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
2017-10-08
Technical Paper
2017-01-2197
Vignesh Pandian Muthuramalingam, Anders Karlsson
Owing to increased interest in blended fuels for automotive applications, a great deal of understanding is sought for the behavior of multicomponent fuel sprays. This sets a new requirement on spray model since the volatility of the fuel components in a blend can vary substantially. It calls for careful solution to implement the differential evaporation process concerning thermodynamic equilibrium while maintaining a robust solution. This work presents the Volvo Stochastic Blob and Bubble (VSB2) spray model for multicomponent fuels. A direct numerical method is used to calculate the evaporation of multicomponent fuel droplets. The multicomponent fuel model is implemented into OpenFoam CFD code and the case simulated is a constant volume combustion vessel. The CFD code is used to calculate liquid penetration length for surrogate diesel (n-dodecane)-gasoline (iso-octane) blend and the result is compared with experimental data.
2017-10-08
Technical Paper
2017-01-2270
Fushui Liu, Yue Kang, Han Wu, Chia-Fon Lee, Yikai Li
CNG-diesel dual fuel combustion mode has been regarded as a practical engine operation strategy because it not only can remain the high thermal efficiency of diesel engine but also can make full use of an alternative fuel—natural gas,which has excellent advantages in economic performance and environmental protection. However, it is suffering from misfire and high HC emissions problems under cold start and low load conditions due to the low combustion speed and high ignition energy of natural gas. As known, hydrogen is a clear energy which has extremely high flammability. Thus, a certain proportion of hydrogen can be added in the natural gas (named HCNG after blending) to improve combustion. In current work, the effect of hydrogen addition on the combustion and flame propagation characteristics of dual fuel engine was studied based on an optical engine by using high speed camera to capture the flame images and Ki-Box to collect the cylinder pressures.
2017-10-08
Technical Paper
2017-01-2241
Xin Yu, Vincent Costanzo, Elana Chapman, Richard Davis
In this work, an experimental method was developed to induce and rate preignition tendency in a single cylinder research SI engine. By observing and quantifying the statistical behavior of some key combustion parameter, a single valued ranking was defined. The sensitivity of this induced preignition ranking method was then explored by varying different engine operating conditions. Finally, different hydrocarbon fuels were found to have relatively large variations on the ranking.
2017-10-08
Technical Paper
2017-01-2198
Zhihong Li, Guoxiu Li, Lan Wang, Hongmeng Li, Jie Wang, Haizhou Guo, Shuangyi He
The electromagnetic valve driving mechanism is the significant equipment, which plays a vital role in the unit pump injection system; therefore, the performance of the electromagnetic valve directly influences the function of the control system. Based on the operation conditions of the unit pump injection system, a steady electromagnetic valve model was modified to study the influence factors of electromagnetic force and the best combination to get the maximum electromagnetic force. The validation model was verified by experiment. The effects of some crucial parameters upon the electromagnetic force were investigated in the present paper, (including working airspace, magnetic pole’s cross-sectional area, coil position, coil turn, the armature thickness). The result shows that the electromagnetic force of the solenoid valve enhanced with the increasing driving current and reduced with the decreasing of working condition.
2017-10-08
Technical Paper
2017-01-2227
Wei Guan, Vinícius Pedrozo, Hua Zhao, Zhibo Ban, Tiejian Lin
Abstract In order to meet increasingly stringent emissions standards and lower the fuel consumption, significant efforts are being made to develop high efficiency low emission internal combustion engines and after-treatment systems. In addition to the trade-off between thermal efficiency and nitrogen oxides (NOx) emissions, the conversion efficiency of the diesel aftertreatment system decreases rapidly at lower exhaust temperature, which occurs at low load operations. Thus, it is necessary to investigate and identify the appropriate combustion and engine control strategies which can lead to lower vehicle exhaust emission by keeping the engine-out NOx low and NOx aftertreament conversion efficiency high through elevated engine exhaust gas temperature (EGT). In this work, an experimental investigation has been performed using external EGR and Miller cycle achieved by delaying the intake valve closing (IVC) timing on a single cylinder heavy-duty diesel engine.
2017-10-08
Technical Paper
2017-01-2428
Peilin Dai, Ying Huang, Donghao Hao, Ting Zhang
Abstract: The vehicle driveline suffers low frequency torsional vibration because of the abrupt change of torque and torque fluctuation of variable frequency. This problem can be solved by model-based predictive control, so building a control oriented driveline model is extremely important. The traditional off-line identified model which does not consider driveline parameter variation such as damping of tire and suspension during vehicle operation cannot accurately reflect the true characteristics of the driveline vibrations. And usually the fixed stiffness is considered, this will cause modeling errors and worse result of vibration control, in this paper, an on-line recursive identification method is proposed and verified based on an electric car. First of all, as for the low frequency vibration, the control oriented model is simplified into a six-parameter model with double inertia.
2017-10-08
Technical Paper
2017-01-2405
Christophe Chaillou, Alexandre Bouet, Arnaud Frobert, Florence Duffour
Fuels from crude oil are the main energy vectors used in the transport sector but these fuels associated to CI engines are nowadays often criticized. Nevertheless, engine and fuel co-research is one of the main leverage to reduce both CO2 footprint and criteria pollutants. CI engines, with gasoline-like fuels, are a promising way for NOx and particulates emission abatement while keeping lower CO2 emission. To introduce a new fuel/engine technology, investigations of pollutants are mandatory. Previous work [1] already studied the behavior of low RON gasoline soot generated with a CI engine. The aim of this paper is to assess the impact of such fuel/engine technology on the HC emissions and on the DOC behavior. HC speciation is performed upstream and downstream DOC. Warm-up and efficiency are also tested for different operating conditions. Then, exothermal capacities are considered to ensure high level of temperature for DPF regeneration.
2017-10-08
Technical Paper
2017-01-2268
Zhanming Chen, Long Wang, Tiancong Zhang, Qimeng Duan, Bo Yang
Liquefied natural gas (LNG) fuelled engines have been widely equipped on heavy duty vehicles both for fuel-economic and environmental protection concerns, however, they always suffer from deteriorated combustion performance and flame stability due to relatively low burning velocity of methane for lean mixture. In this paper, experimental study was conducted on a turbo-charged, spark-ignition, lean-burn LNG engine with methanol port injection. The combustion characteristics such as cylinder pressure traces, heat release rate (HRR), mass fraction burned (MFB), ignition delay, centroid of heat release, position of CA50 and CA90, as well as cyclic variation of peak pressure were analysed under light load (BMEP=0.3876MPa) with different methanol substitution rates (MSR=0%, 5.2%, 10.2%, 17.2%). The experimental results show that combustion phase advanced with increment of MSR due to faster burning velocity of methanol.
2017-10-08
Technical Paper
2017-01-2223
Vikram Singh, Per Tunestal, Martin Tuner
In recent years, stricter regulations on emissions and higher demands for more fuel efficient vehicles have led to a greater focus on increasing the efficiency of the internal combustion engine. Nowadays, there is increasing interest in the recovery of waste heat from different engine sources such as the coolant and exhaust gases using, for example, a Rankine cycle. In diesel engines 15% to 30% of the energy from the fuel can be lost to the coolant and hence, does not contribute to producing work on the piston. This paper looks at reducing the heat losses to the coolant by increasing coolant temperatures within a single cylinder Scania D13 engine and studying the effects of this on the energy balance within the engine as well as the combustion characteristics. To do this, a GT Power model was first validated against experimental data from the engine.
2017-10-08
Technical Paper
2017-01-2211
Mengqiu Jia, Zhen Lu, Tianyou Wang, Yufeng Li, Yanzhe Sun, Ming Wen, Zhizhao Che, Kai Sun
The intake process plays an important role in the operation of internal combustion engines. In the present study, a three-dimensional transient simulation of a four-valve diesel engine was performed using Large Eddy Simulation (LES) model based on software CONVERGE. The mean velocity components in three directions through the intake valve curtain, the flow separation around the intake valves, the influences of inlet jet on turbulence flow field and cycle-to-cycle variation were investigated in this work. The result shows that the mean velocity distributes non-uniformly near the valve curtain at high valve lifts. In contrast, the mean velocity distribution is uniform at low valve lifts. It is found that the flow separation occurs at valve stem, valve seat and valve sealing through the outlet of the helical port. In contrast, flow separation is only observed in the valve seat through the outlet of the tangential port.
2017-10-08
Technical Paper
2017-01-2286
A S Ramadhas, Punit Kumar Singh, Reji Mathai, Ajay Kumar Sehgal
Ambient temperature conditions, engine design, fuel, lubricant and fuel injection strategies influence the cold start performance of gasoline engines. Despite the cold start period is only a very small portion in the legislative emission driving cycle, but it accounts for a major portion of the overall driving cycle emissions. The start ability tests were carried out in the weather controlled transient dynamometer - engine test cell at different ambient conditions for investigating the cold start behavior of a modern generation multi-point fuel injection system spark ignition engine. The combustion data were analyzed for the first 200 cycles and the engine performance and emissions were analyzed for 300 s from key-on. It is observed that cumulative fuel consumption of the engine during the first 60 s of cold starting at 10 °C was 60% higher than at 25 °C and resulted in 8% increase in the value of peak speed of the engine.
2017-10-08
Technical Paper
2017-01-2369
Prakash Arunachalam, Martin Tuner, Per Tunestal, Marcus Thern
Humid air motor (HAM) is an engine operated with humidified inlet charge. System simulations study on HAM showed the waste heat recovery potential over a conventional system. An HAM setup was constructed, to comprehend the potential benefits in real-time, the HAM setup was built around a 13-litre six cylinder Volvo diesel engine. The HAM engine process is explained in detail in this paper. Emission analysis is also performed for all three modes of operation. The experiments were carried out at part load operating point of the engine to understand the effects of humidified charge on combustion, efficiency, and emissions. Experiments were conducted without EGR, with EGR, and with humidified inlet charge. These three modes of operation provided the potential benefits of each system. Exhaust heat was used for partial humidification process. Results show that HAM operation, without compromising on efficiency, reduces NOx and soot significantly over the engine operated without EGR.
2017-10-08
Technical Paper
2017-01-2422
Na Li, Fenlian Huang, Yuhua Bi, Yueqiang Xu, Lizhong Shen, Dewen Jia
The assembly of connecting rod bearing and crankpin is a key friction pair which offers an important guarantee for stable operation of diesel engine. Specific to the non-road 2-cylinder diesel engine developed independently and based on the theory of elasto-hydrodynamic lubrication as well as multi-body dynamics, this paper establishes a multi-body dynamics model for connecting rod bearing of the 2D25 horizontal diesel engine and makes a research on the influence of bearing width, bearing clearance, and oil inlet position and diameter upon lubrication of connecting rod bearing, taking into consideration that of the surface appearance of bearing bush and the elastic deformation of bearing bush and axle journal upon the same. Research results show that bearing width and bearing clearance are the major factors that influence lubrication characteristics of connecting rod bearing while oil inlet position and diameter only have a small influence on such characteristics.
2017-10-08
Technical Paper
2017-01-2384
Ijhar H. Rusli, Svetlana Aleksandrova, Humberto Medina, Stephen F. Benjamin
The effect of the residual swirl from the turbocharger turbine on the catalyst flow distribution has been investigated experimentally and numerically. A swirling flow rig with a moving-block swirl generator was used to generate swirling flow in a sudden expansion diffuser with a wash-coated diesel oxidation catalyst (DOC) downstream. Hot-wire anemometry (HWA) was used to measure the axial and tangential velocities of the swirling flow upstream of the diffuser expansion and the axial velocity downstream the monolith. Pressure along the diffuser wall was measured using Scanivalve pressure scanners. With no swirl, the results show that the flow is highly non-uniform in the catalyst monolith with maximum velocities near the diffuser axis. High non-uniformity is also exhibited at high swirl levels with highest velocities near the diffuser wall. An intermediate swirl level exists where the flow is uniform.
2017-10-08
Technical Paper
2017-01-2382
Tul Suthiprasert, Sirichai Jirawongnuson, Ekathai Wirojsakunchai, Tanet Aroonsrisopon, Krisada Wannatong, Atsawin Salee
One of the most important challenges on implementing Diesel Dual Fuel (DDF) engine into the vast market is CH4 emission in its exhaust. This is due to the fact that CH4 is hard to oxidize at lower temperature environment of DDF exhaust comparing to that of conventional or bi-fuel engines. In addition, another parameter such as exhaust flow rate, specie concentration, especially CO, C3H8, and water have tremendous impact on Diesel Oxidation Catalyst performance on reducing CH4. Combining of all these factors together, a study of CH4 reduction is a major research problems that researchers around the world are keen to gain more fundamental understandings. In this work, a new CH4 kinetic model, which is based on Langmuir Hinshelwood mechanism, including CO, C3H8, and water is implemented into 1-D and 3-D Catalytic Converter models. The CH4 kinetic model is calibrated with the experiment by using synthetic exhaust gas generator.
2017-10-08
Technical Paper
2017-01-2237
K. Gopal Duleep
The overall objectives of this study are to establish the relationship between a spark ignition, or Otto cycle, engine energy efficiency and the octane number of the fuel through a comprehensive review of recently published literature. The efficiency of the ideal Otto cycle is a function of the compression ratio, but increasing compression ratio is limited by the onset of knock, which can be prevented by increasing fuel octane number. Hence, in an ideal case, there is a direct connection between engine efficiency and fuel octane number. In the real world, other factors also contribute to the relationship and spark timing is the primary control variable that affects both knock and efficiency. This analysis explores the relationship between efficiency and octane number.
2017-10-08
Technical Paper
2017-01-2242
Boyuan Wang, Zhi Wang, Changpeng Liu, Fubai Li, Yingdi Wang, Yunliang Qi, Xin He, Jianxin Wang
A new ignition method is proposed called flame accelerated ignition, which is realized by a flame acceleration tunnel set between the spark plug and the main chamber with annular spoilers inside. The investigation of flame accelerated ignition was experimentally accomplished on both a rapid compression machine with optical accessibility and a single-cylinder heavy duty engine. In rapid compression machine study, synchronous pressure sensing and high-speed photography were used with spark ignition cases tested for comparison. The results show that the combustion process is significantly accelerated by flame acceleration ignition. The combustion duration is shortened by more than 30% under all loads compared with spark ignition. According to the optical results, the axial speed of flame outside the flame acceleration tunnel reaches at least 30 m/s and shows positive correlation with load, which is over 10 times than that of conventional flame propagation caused by spark ignition.
2017-10-08
Technical Paper
2017-01-2229
Byeongsoek Lee, Heechang Oh, SeungKook Han, SooHyung Woo, JinWook Son
There are two way to improve engine thermal efficiency. One is to improve the theoretical thermal efficiency by increasing the compression ratio and specific heat ratio. The other is to reduce various engine losses like friction, pumping, heat loss. For the development of Ultra High Efficiency, We designed the new 2.0L NA GDI engine based on HMC's Nu 2.0L GDI engine. We conducted various parameter studies related to gasoline combustion characteristic, such as compression ratio, ignition system, intake port design, cam duration, Cooled EGR, etc. As a result, we achieved the maximum thermal efficiency up to 42%(~200g/kWh) in stoichiometric AFR. This paper described the ways and possibilities to improve the maximum thermal efficiency.
2017-10-08
Technical Paper
2017-01-2249
Chen Wang, Tianyou Wang, Kai Sun, Zhen Lu, Yong Gui
Clean combustion is critical for marine engines to meet the Tier III emission regulation. In this paper, the effects of EGR and injection strategies (including injection pressure, injection timing as well as multiple injection technology) on the performance and emissions of a 2-stroke, low speed marine diesel engine were investigated by using computational fluid dynamics (CFD) simulations to reach the IMO Tier III NOx emissions target and reduce the fuel consumption rate. Due to the large length scale of the marine engine, RANS simulation was performed in combination with the CTC-SHELL combustion model. Based on the simulation model, the variation of the cylinder pressure curve, the average temperature in the cylinder, the combustion heat release rule and the emission characteristics were studied.
Viewing 1 to 30 of 110593