Criteria

Text:
Display:

Results

Viewing 1 to 30 of 105108
2016-05-01
Journal Article
2015-01-9147
Zhiyun Zhang, Miaohua Huang, Yupu Chen, Shuanglong Zhu
Abstract In the field of Electric Vehicle (EV), what the driver is most concerned with is that whether the value of the battery's capacity is less than the failure threshold because of the degradation. And the failure threshold means instability of the battery, which is of great danger for drives and passengers. So the capacity is an important indicator to monitor the state of health (SOH) of the battery. In laboratory environment, standard performance tests can be carried out to collect a number of related data, which are available for regression prediction in practical application, such as the on-board battery pack. Firstly, we make use of the NASA battery data set to form the observed data sequence for regression prediction. And a practical method is proposed to determine the minimum embedding dimension and get the recurrence formula, with which a capacity model is built.
2016-05-01
Technical Paper
2015-01-9132
Husain Kanchwala, Harutoshi Ogai
Japan is suffering from the problem of aging society. In Kitakyushu city there are a quarter of people older than 65 years. The road in this residential area has specific characters including very narrow road, steep gradient and vulnerable roadbed. A large proportion of elder people are living on their own. These characters make driving unsuitable. The problem is exaggerated because of infrequent public transportation. A need assessment of small electric vehicle at a community event was done. Based on the survey result and topographical features, the small electric vehicle Toyota COMS was selected. The vehicle is then equipped with features like Automatic driving and platooning. Automatic driving system is developed for this intelligent transport system (ITS) using predictive control of non- linear model to control three variables (brake, speed and steer angle).
2016-05-01
Journal Article
2015-01-9146
Swanand Kulkarni
In a Mild hybrid electric vehicle, a battery serves as a continuous source of energy but is inefficient in supplying peak power demands required during torque assists for short duration. Moreover, the random charging and discharging that result due to varying drive cycle of the vehicle affects the life of the battery. In this paper, an Ultra-capacitor based hybrid energy storage system (HESS) has been developed for mild hybrid vehicle which aims at utilizing the advantages of ultra-capacitors by combining them with lead-acid batteries, to improve the overall performance of the battery, and to increase their useful life. Active current-sharing is achieved by interfacing ultra-capacitor to the battery through a bi-directional boost dc-dc converter.
2016-05-01
Technical Paper
2015-01-9145
Abdullah AL-Refai, Osamah Rawashdeh, Rami Abousleiman
Lithium-Ion batteries are the standard portable power solution to many consumers and industrial applications. These batteries are commonly used in laptop computers, heavy duty devices, unmanned vehicles, commercial airplanes, electric and hybrid cars, cell phones, and many more. Charging these batteries is a delicate process, because it depends on numerous factors such as temperature, cell capacity, and most importantly the power and energy limits of the battery cells. Charging capacity, charging time and battery pack temperature variations are highly dependent on the charging method used. These three factors can be of significant importance in applications with strict charging time requirements or with limited thermal management abilities. In this paper, three charging methods are experimentally studied and analyzed. Constant-current constant-voltage, time pulsed charging method, and the multistage constant current charging method were tested and surveyed.
2016-05-01
Journal Article
2015-01-9144
Marc-Olivier Lacerte, Gabriel Pouliot, Jean-Sébastien Plante, Philippe Micheau
Electric Vehicles (EVs) with single-ratio gearbox provide high levels of smoothness, but using multi-speed gearbox can provide significant benefits in terms of vehicle acceleration, top speed, powertrain cost, mass, and energy consumption. In particular, Automated Manual Transmissions (AMTs) have characteristics of smooth shifts without torque interruption when coupled to a torque bypass clutch. However, conventional friction clutches are not best suited as torque bypass clutches because of their limited controllability and because large amount of heat must be dissipated to slow down the motor during gearshifts. This paper studies the feasibility of a seamless AMT architecture for EVs and Hybrid Electric Vehicles (HEVs) using an eddy current torque bypass clutch that is highly controllable, robust, low cost, and has no wearable parts.
2016-01-01
Journal Article
2015-01-9084
Seyedmohammad Shams, Peng Yang, Rani Elhajjar
Abstract The disk spring offers the potential of significant weight savings when designed with continuous fiber reinforced composite materials. The internal stresses in a disk spring are ideally suited for composite material application due to their superior resistance to in-plane and bending stresses. In this study, a composite laminate disk spring is designed, analyzed and fabricated to take advantage of the low specific strength and weight and high damage tolerance of composite laminates. The design of the disk composite spring considers effects of the laminate stacking sequence and the geometric variables on the disk spring's mechanical performance. A continuum damage finite element analysis approach is used to understand the damage initiation and evolution as a function of applied load. Experimental analysis and a progressive damage analysis based on virtual crack closure technique are performed to evaluate the damage tolerance of the disk spring under fatigue loadings.
2016-01-01
Journal Article
2015-01-9085
Vinod Upadhyay, Xiaoning Qi, Nick Wilson, Dante Battocchi, Gordon Bierwagen, Joy Forsmark, Robert McCune
This work reports on measurement and analysis of the galvanic interaction between steel self-piercing rivets (SPRs) having several different surface conditions and magnesium alloy substrates under consideration for use in automotive structural assemblies. Rivet surface conditions included uncoated steel, conventional Zn-Sn barrel plating and variations of commercial aluminizing processes, including supplemental layers and sealants. Coating characteristics were assessed using open circuit potential (OCP) measurement, potentiodynamic polarization scanning (PDS), and electrochemical impedance spectroscopy (EIS). The degree of galvanic coupling was determined using zero-resistance ammeter (ZRA) and the scanning vibrating electrode technique (SVET), which also permitted characterization of galvanic current flows in situ.
2015-12-01
Journal Article
2015-01-9115
Peter Koch, Christian Angrick, Denise Beitelschmidt, Günther Prokop, Peter Knauer
In ride comfort as well as driving dynamics, the behavior of the vehicle is affected by several subsystems and their properties. When analyzing the suspension, especially the characteristics of the main spring and damper but also rubber bushings are of main importance. Still, the properties of the different components are dependent on the present operating conditions. Concerning rubber bushings, several effects have already been investigated, e.g. dependencies of the transfer function of frequency, amplitude or load history. In this context influences of changes in temperature are often neglected. However, in the following research, the focus specifically lies on determination and analysis of the temperature dependency of rubber bushings. For this purpose, initially the relationship between properties of pure rubber and rubber bushings is described, which serves as a basis for correlating respective temperature dependencies.
2015-12-01
Journal Article
2015-01-9114
Hendrik Abel, Sebastiaan van Putten, Andreas Wagner, Günther Prokop
The aim of this investigation is the improvement of the lateral vehicle dynamics using the rim width. For that purpose the rim width is considered as a development tool and configured with regard to specified targets. Using a specifically developed method of simulation the influence of the rim width is analysed within different levels: starting at the component level "tyre" and going up to the level of the whole vehicle. With the help of substantial simulations using a nonlinear double-track model the dimensioning of the rim width is brought to an optimum. Based on both tyre and vehicle measurements the theoretical studies can be proved in practice. As a result the rim width has a strong influence on the behaviour of the tyre as well as on the overall vehicle performance which emphasises its importance as a potential development tool within the development of a chassis.
2015-11-01
Journal Article
2015-01-9074
Seung Yeon Yang, Nimal Naser, Suk Ho Chung, Junepyo Cha
Abstract Effects of temperature, pressure and global equivalence ratio on total ignition delay time in a constant volume spray combustion chamber were investigated for diesel fuel along with the primary reference fuels (PRFs) of n-heptane and iso-octane in relatively low temperature conditions to simulate unsteady spray ignition behavior. A KAUST Research ignition quality tester (KR-IQT) was utilized, which has a feature of varying temperature, pressure and equivalence ratio using a variable displacement fuel pump. A gradient method was adopted in determining the start of ignition in order to compensate pressure increase induced by low temperature heat release. Comparison of this method with other existing methods was discussed. Ignition delay times were measured at various equivalence ratios (0.5-1.7) with the temperatures of initial charge air in the range from 698 to 860 K and the pressures in the range of 1.5 to 2.1 MPa, pertinent to low temperature combustion (LTC) conditions.
2015-11-01
Journal Article
2015-01-9076
Nadir Yilmaz, Stephen Davis, Jacob James, Alan Ferry, Bernie Thompson
A tool was developed by Illinois Tool Works (ITW) called the "AutoEKG®FSA" (AutoEKG Fuel System Analyzer) which evaluates combustion quality in an engine by measuring the exhaust pulses of the engine. While many factors are known to influence combustion quality and the wave pattern produced by the instrument, the primary factor in this study was the presence of an asphalt-like material in the air intake system. By examining the waveforms measured by the AutoEKGFSA system before and after carbon cleaning, it has been observed that the engines studied not only run better after the removal of carbon in the system, but the improvements may be measured using this system.
2015-11-01
Journal Article
2015-01-9075
Stefan Heitzig, Alexander Weinebeck, Hubertus Murrenhoff
In this paper compatibility studies of biofuel candidates and similar liquids with the elastomeric materials nitrile butadiene rubber and fluoroelastomer are presented. The results gained with defined reference elastomers are compared to results gained with the materials used in the technical application. For this purpose test specimens are prepared from fuel hoses and the material used for shaft seals of fuel pumps. The experimental results are subsequently used to evaluate prediction approaches based on the HSP- and QSPR-method. Finally a comparison of these two approaches is given.
2015-10-01
Technical Paper
2015-01-9018
In this particular field study, the authors have demonstrated that telematics can be used to monitor and improve safe and fuel-efficient driving behavior. Telematics was used to monitor various driver performance parameters: unsafe events (sudden accelerations and hard braking expressed as Yellow and Red events, depending on severity), speeding, engine revolutions per minute (RPM), and fuel economy (miles per gallon). The drivers consisted of two groups: drivers of day cabs and drivers of sleeper cabs. The drivers of both groups were monitored during a baseline period during which no feedback, coaching, or rewards were provided. Then, the drivers of both groups were monitored during an intervention period, during which drivers were provided with feedback, coaching, and rewards.
2015-10-01
Journal Article
2015-01-9019
Jean-Baptiste Gallo, Robert L. Russell, Kent Johnson, Thomas Durbin
With funding from the California Energy Commission, the California Hybrid, Efficient and Advanced Truck Research Center, contracted with the University of California, Riverside’s College of Engineering to evaluate the performance of a Class 5 battery electric urban delivery vehicle over two standardized driving cycles and a steady state range test on a chassis dynamometer. The test vehicle, a Smith Electric Newton Step Van, was equipped with a proprietary data acquisition system which was set to record a wide variety of vehicle parameters at a 1 Hz sampling period. In addition, the chassis dynamometer was set to measure and record additional parameters. Lastly, a portable J1772 EVSE recorded both grid energy and power at 15 minutes interval. This project provides a controlled test evaluation of the Smith Electric Newton Step Van. It recognizes the vehicle’s potential for a successful delivery vehicle and identifies several important findings and areas that will need further research.
2015-09-29
Technical Paper
2015-01-2847
Adam Kouba, Jiri Navratil, Bohumil Hnilicka, Patrick C. Niven
Internal combustion engines continue grow more complex every day out of necessity. Legislation and increasing customer demand means that advanced technologies like multi-path EGR, advanced boosting, and aftertreatment systems continue to drive ever-expanding requirements for engine control to improve performance, fuel economy, and reduce emissions. Therefore, controller development and implementation are becoming more costly, both in terms of time and the monetary investment in engine hardware. To help reduce these costs, a sophisticated tool chain has been created which allows a real-time, physical, crank-angle resolved 1D engine model to be implemented on a rapid prototyping ECU which is then used in the control strategy of a running engine. Model-based controllers have been developed and validated to perform as well as or better than controllers using traditional sensors.
2015-09-29
Technical Paper
2015-01-2879
Evandro Silva
In recent years the commercial vehicle industry, specifically the heavy duty truck product line, has seen a rapid increase in the replacement of pure mechanical systems by electronic controlled systems. Engine, transmission, brakes, lighting, clusters, etc. are all monitored and/or controlled electronically. The adoption of electronic systems created a substantial change in the complexity of our products. Currently Diagnostic Trouble Codes (DTC) displayed on instrument clusters, in the majority of the cases, are no longer generated by a single sensor/component failure, instead these DTCs are triggered by a system monitor flag, result of a below average performance or a failure of an entire system. This new level of complexity makes it very difficult for the current diagnostic methods and tools, to identify what is causing the equipment to operate below ideal conditions.
2015-09-29
Technical Paper
2015-01-2860
Xinyu Ge, Jonathan Jackson
The application of Artificial Intelligence (AI) in automotive industry can dramatically reshape the industry. In past decades, many Original Equipment Manufacturers (OEMs) applied neural network and pattern recognition technologies to power train calibration, emission prediction and virtual sensor development. The AI application is mostly focused on reducing product development and validation cost. AI technologies in these applications demonstrate certain cost-saving benefits, but are far from disruptive effect. The disruptive impact can be realized when AI application finally bring cost-saving benefits directly to end users. For example, automation of vehicle or machine operation can dramatically improve the efficiency. However, there is still a gap between the current technologies and the one that can fully enable the vehicle or machine intelligence including reasoning, knowledge, planning and self-learning.
2015-09-29
Technical Paper
2015-01-2866
Saeil Jeon, Stacey Spencer, Paul Joiner
Lightweight solution is one of the keywords that we see every day. Developing smart, light and durable materials is one focal area that is inevitable to be done in the ground transportation sector. Another angle to look for is the protection and beautification of the substrate finish where surface treatment technology stands out. Combining both aspects is crucial in the industry for customer satisfaction. Recycled carbon fibers are used to form the reinforcement in the composite side, where they are infused or mixed with the matrix materials either in SMC (Sheet Mould Compound) or BMC (Bulk Mould Compound) format, depending upon the application. Glass fibers are usually used for the practical application, however considering further weight cut on the component, carbon fibers cannot be overlooked for their superior mechanical properties. However, due to the cost of carbon fibers many times the application may be over-designed.
2015-09-29
Technical Paper
2015-01-2851
Regulatory emission requirements as well as owning and operating cost are primary market drivers for OEMs and component suppliers to focus on more efficient machine technologies. As a result, new technologies are being developed in the area of Hydraulics, Power Trains, Electronics, Engines and controls of these subsystems and components. Some of the technology potentials have been known for quite some time but were only just partially commercialized. Examples of these technologies are: more efficient and electrically controlled hydraulic systems, CVT transmissions, electric drives, reduction in engine speeds including their integration. Although automotive industry has been leading technology developments, in the recent decade significant work has been done in the off-highway applications.
2015-09-29
Technical Paper
2015-01-2888
Devadatta Mukutmoni, Tristan Donley, Jaehoon Han, Karthik Mahadevan Muthuraman, P. David Campbell, Tom Mertz
Design and evaluation of construction equipments and vehicles constitute a very important but expensive and time consuming part of the engineering process. This is especially so because of the large number of variants and the relatively small production volume of each variant leading to large costs of engineering and design of vehicles as a proportion of total sales. A simulation based methodology could potentially reduce the cost and time of the entire design process. In this study, we look into an alternative simulation based approach to the design process. However, given the enormity of the task, we limit the scope of this investigation to design evaluation and improvement for thermal considerations only. In particular, thermal evaluation of the electronic control units are looked into.
2015-09-29
Technical Paper
2015-01-2854
Timothy Opperwall, Andrea Vacca
Hydraulic systems have an important role in both on and off-highway vehicles. Designing for improved noise performance of fluid power systems is an essential part of improving current systems and opening up new areas where fluid power can bring improvements in efficiency and performance. As the technology advances and spreads to lighter applications, the noise generation and propagation due to hydraulic components becomes a primary design concern. The present research includes development of acoustic radiation models for noise radiation from hydraulic pumps and motors. The need for new methods for identification of noise sources and transmission is evident in order to direct future modeling efforts. Discovering the key features of noise generation from both simulation and experimental techniques allows for improved techniques to improve the noise performance of fluid power components and systems.
2015-09-29
Technical Paper
2015-01-2728
Paul C. Cain
OEM benefit: Vehicle manufacturers desire continuous feedback in monitoring key safety sub-assemblies. In this application, engineers are calculating the remaining brake pad life by monitoring the current thickness of the brake pad friction material. This information is used in scheduling preventative maintenance activities and avoiding safety incidents. Unplanned machine down time and field repair costs in earthmoving equipment is cost prohibitive. This technology allows OEM's to have high confidence, continuous feedback on this critical vehicle safety feature avoiding expensive, unplanned repairs and improving field "up time" performance. Application challenge: Developing a reliable linear position sensor that is suitable for continuous monitoring of brake pad material thickness in a high pressure, high temperature, high vibration and contaminated environments typical of large construction (earthmoving) vehicles.
2015-09-29
Technical Paper
2015-01-2881
Dhruv Gupta, Vasu Kumar, Soumya Roy, Naveen Kumar
The danger posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Man’s energy requirements are touching astronomical heights. The natural resources of the Earth can no longer cope with it as their rate of consumption far outruns their rate of regeneration. The automotive sector is without a doubt a chief contributor to this mayhem as fossil fuel resources are fast depleting. The harmful emissions from vehicles using these fuels are destroying our forests and contaminating our water bodies and even the air that we breathe. The need of the hour is to look not only for new alternative energy resources but also clean energy resources. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms.
2015-09-29
Technical Paper
2015-01-2901
Shaoyun Sun, Genghua Liao, Qiang Fu, Kelong Lu, Jing Zhao, Zhengzheng Li, Jiaquan Chen, Guang Shi, Sacha Jelic, Bo Li
Trucks are designed to carry heavy load, which implies high demanding design criteria for save operation. Heavy load means a lot of energy is needed to displace the load. During a stop, the kinetic energy is transferred into heat, which can be problematic in case of excessive proportions and/or when the heat cannot be removed from the system properly. The brake system therefore needs to be designed such to be able to absorb large of amount of heat and transfer the heat out of its system by either convection, conduction and/or radiation. All three heat transfer modes play an important role since the drum brakes of trucks are not much exposed to external airflow, a significant difference from disk brakes of passenger cars analyzed in previous studies. This makes it a complex heat transfer problem which is not easy to understand. Numerical methods provide insight by visualization of the different heat transfer modes.
2015-09-29
Technical Paper
2015-01-2865
Damodar Kulkarni, Pankaj Deore
Cost-reduction and cost competitiveness have emerged as major strategic tools to an enterprise and are being used all over the world to fight for survival as well as maintain sustainable growth. Maximization of value-creation by enriching the planet, people and the economy should be the key drivers leading to cost-reduction strategies in any business. The main objectives of this paper are to explain the Processes and Principles of Cost-reduction in technology-transfer to low-cost emerging economies to achieve sustainable cost-reduction and create a culture of cost-consciousness throughout an organization. DivgiWarner has not only designed and developed but has also been practicing unique processes of cost-reduction utilizing various tools as, 1. Value Analysis and Value Engineering 2. Cost-reduction through productivity improvement 3. Supply Chain Management ( SCM) 4. Lean Manufacturing 5. Total Quality Management (TQM) 6. Control over fixed Costs 7.
2015-09-29
Technical Paper
2015-01-2878
Peter Subke, Michael Eberl
SAE J1939 is the synonym for a CAN-based in-vehicle network for heavy-duty road-vehicles (trucks and buses) and non-road mobile machinery (NRMM). The SAE J1939 standards collection consists of 18 parts and 2 digital annexes. SAE J1939-21 (Data Link Layer) describes the data link layer using the CAN protocol with 29-bit identifiers, SAE J1939-73 (Application Layer – Diagnostics) includes the specification of diagnostic messages (DMs). The software components of external test equipment can be described by software interfaces (APIs). ISO 22900 (Modular Vehicle Communication Interface) contains the description of the D-Server that comes with the D-Server API for the diagnostic application and the D-PDU API for the connection to the in-vehicle network (e.g. CAN). ISO 22901-2 (D-PDU API) references SAE J1939-73 and SAE J1939-21 as “Truck and Bus CAN”. D-Server based external test equipment is powered by data which is described in ODX.
2015-09-29
Technical Paper
2015-01-2845
Qi Chen
Recent years have witnessed an increase in the number of electrical loads being driven by semiconductor devices in the body control module or BCM rather than by relays in a typical truck with a 24V vehicle power net. This paper presents the major challenges caused by the higher voltage class of the truck supply and the longer cables, followed by an analysis of some key issues related to the design of truck BCMs to drive different loads. It offers some general guidance on practical design issues to BCM designers, such as an understanding of the advantages and disadvantages of different BCM architectural topologies, how to make a choice between a relay or a semiconductor driver, knowledge of the requirements of semiconductors used in truck applications etc.
2015-09-29
Technical Paper
2015-01-2880
Fabio Luz Almeida, Philip Zoldak, Marcos de Mattos Pimenta, Pedro Teixeira Lacava
The use of numerical simulations in the development processes of engineering products has been more frequent, since it enables us to predict premature failures and to study new promising and valuable concepts. In industry, numerical simulation usually has the function of reducing the necessary number of validation tests before spending huge amount of resources on alternatives with less chance to succeed. In the context of an economically committed country, the matter of cargo transportation is of great importance, since it affects the trading of consumer goods between cities, states and their flow towards exportation. Thus, the internal combustion (ICE) Diesel cycle engines play an important role in Brazil, since they are extensively used in automotive applications and commercial cargo transportation, mainly due to their relevant advantage in fuel consumption and reliability.
2015-09-29
Technical Paper
2015-01-2766
Sai Venkatesh Muravaneni, Egalaivan Srinivasan, Jagankumar Mari
Steering wheel being the most used tactile point in a vehicle, its feel and response is an important factor based on which the vehicle quality is judged. Engineering the right feel and response into the system requires knowledge of the objective parameters that relate to the driver perception. Extensive correlation work has been done in the past pertaining to passenger cars, but the driver requirements for commercial vehicles vary significantly. Often it becomes difficult to match the right parameters to the steering feel experienced by the drivers since most of the standard units used to describe them are of zero or first order parameters. Analyzing the second order parameters gave a better method to reason driver related feel. Also, each subjective attribute was fragmented into sub-attributes to identify the reason for such a rating resulting in the identification of the major subjective parameters affecting driver ratings.
2015-09-29
Technical Paper
2015-01-2852
Daniel Ribeiro, Rodrigo Chaves, Rogerio Curty Dias, Gian Marques
In order to evaluate the opportunities to use hybrid concepts for heavy commercial vehicles for emerging markets, MAN Latin America has developed a VW refuse truck with 23t GVW using the hybrid hydraulic technology. In site vehicle tests measurements has indicated a fuel savings up to 25%, which means a reduction around 4.08 liters of diesel/hour or 20 tones CO2/year . Thus, a collaborative cooperation with Rio de Janeiro Sanitation Department (Comlurb) was set for a truck evaluation on a real operation. This 03-month evaluation used one VW 17.280 6x2 hybrid hydraulic refuse truck and other VW refuse truck similar standard diesel. A random dispatch system ensures the vehicles are used in a similar manner. Global positioning system logging, fueling, and maintenance records are used to evaluate the performance of this hybrid hydraulic refuse truck.
Viewing 1 to 30 of 105108