Refine Your Search

Search Results

Technical Paper

The Effect of Cerium Oxide Nano Particles Fuel Additive on Performance and Emission of Karanja Biodiesel Fueled Compression Ignition Military 585kW Heavy Duty Diesel Engine

2018-09-10
2018-01-1818
Global warming with stringent emission legislation along with the depletion of fossil fuel has given us an opportunity to find biodiesel as alternative to diesel fuel. Biodiesel has been widely accepted as comparable fuel to diesel in diesel engine. This is due to its renewable property, better lubricity, along with lesser gaseous emission as compared to diesel fuel. However, there is a major disadvantage in the use of biodiesel as it increases NOx emission. Fuel additive becomes one of the essential tools to overcome the drawback of biodiesel required to meet the international standard of performance and emission. In this study, the performance, combustion, and gaseous emission of CO, CO2, HC, NOx and PM including particle size number distribution characteristics, were compared for diesel, Karanja oil biodiesel, and Karanja oil biodiesel with Cerium Oxide Nano particles fuel additive, in a 12 cylinder, 585 kW, CIDI military diesel engine.
Technical Paper

Effects of Environmental Parameters on Real-World NOx Emissions and Fuel Consumption for Heavy-Duty Diesel Trucks Using an OBD Approach

2018-09-10
2018-01-1817
OBD (On-Board Diagnostic) test system is applied to research influences of environmental parameters (altitude and environment temperature) on real-world NOx emission and fuel consumption for heavy-duty diesel trucks in this paper. The research results indicate that altitude and environment temperature have great influence on NOx emission rate and fuel consumption. High altitude in range of 3000~4000 m results in NOx emission rate is lower than low and moderate temperature because of air intake amount decreasing. However the fuel consumption rate is higher than lower altitude because altitude influences real-time changes of air inflow and combustion conditions in the cylinder of the engine. NOx emission rate and fuel consumption is more stable at different vehicle speed, VSP and RPM at high altitude, and NOx emission rate fluctuate dramatically at low and moderate altitude. The fuel consumption rate is higher at 10~20 °C than that at lower and higher temperature.
Technical Paper

Feasibility of Virtual Environments to Develop Future Driving Cycles

2018-09-10
2018-01-1816
The current procedure for testing emissions from new vehicles, the World Harmonised Light Vehicle Test Procedure (WLTP), was introduced in September 2017. The WLTP was developed by collecting over 765,000 kilometres worth of data in order to isolate driver behaviour from other real world variables. However, this is a very time consuming and costly process. This paper discusses the suitability of a cheaper and more time efficient alternative. Driver behaviour has a significant impact on the emissions produced from the same vehicle. This study explores the feasibility of utilising virtual environments as an alternative to real world testing to isolate driver behaviour to develop future drive cycles. The use of virtual environments have some significant advantages over real world testing: they can be strictly controlled in terms of the weather, topography and vehicle characteristics, thereby aiding the isolation of driver behaviour from other variables.
Technical Paper

Real Driving NOx Emissions from Euro VI Diesel Buses

2018-09-10
2018-01-1815
Since 2013, Euro VI heavy-duty on-road vehicles have been on the market in the Europe. Regulated exhaust emissions, including nitrogen oxides and particulate matter, have been cut down to a very low level, independent of fuel (diesel or natural gas). Multiple research papers have shown that the regulated emissions from the Euro VI and US 2010 heavy-duty on-road vehicles tested on chassis dynamometers really deliver emission levels which correspond the type approval requirements, independent of the test cycle used. In-service conformity (ISC), which is included in the Euro VI legislation, requires heavy-duty on-road engine manufacturers to test and prove their engines to comply with the emission legislation during the engine in-use period. The measurements are carried out in the field using PEMS (Portable Emission Measurement System) equipment. This kind of testing, depicting real-world emissions is the final stage to confirm low real-life emissions.
Technical Paper

Line Voltage Control of Induction Motor for Increase Its Efficiency in Stable Area

2018-09-10
2018-01-1830
Regular induction motors operate at a constant value of voltage. They operate from zero external load to rated value. At low loads, motors works with reserve of the power. At low loads, motor can work with lower voltage, with lower current (lower power losses) and higher power factor (cos φ). In the paper, we consider theoretical basics of reduction of idle current and increase power factor in idle mode operation. We consider speed controller by changing value of motor voltage. With this controller, we can reduce idle current and increase its power factor. In addition, we consider current controller for limiting starting current by decreasing voltage during motor start, and reduction idle current with improved power factor in idle steady state conditions. Voltage change includes controlled (thyristor) rectifier or pulse width modulated converter of voltage. Controllers can include speed or current feedbacks. We consider digital model of induction motor with different controllers.
Technical Paper

Structural Integrity of In-Wheel Motors

2018-09-10
2018-01-1829
In-wheel motors offer an optimized solution for novel drivetrain architectures of future electric vehicles that could penetrate into the mainstream automotive industry, moving the wheel actuation where it’s required, directly inside the wheels. Obtainable literature mainly deals with optimization of electromagnetically active parts, however, mechanical design of electromagnetically passive parts that indirectly influence motor performance also requires detailed analysis and extensive validation.
Technical Paper

Investigation of the Hybrid Operating Modes Regarding Efficiency, Emissions and Comfort for the Parallel-Series Hybrid Powertrain Concept DE-REX

2018-09-10
2018-01-1828
The “Two-Drive-Transmission with Range-Extender” (called DE-REX) is an innovative hybrid powertrain concept using two electric motors and an internal combustion engine. The two electric motors are permanent magnet synchronous motors with a maximum power of 48 kW each. As combustion engine a 3 cylinder, turbocharged engine with a power of 65 kW is used. The aggregates are coupled to a transmission whose layout is characterized by consisting of two parallel 2-speed sub-transmissions. This layout offers a high flexibility and enables both parallel and series hybrid driving. The hybrid control unit (HCU) has to select the optimal driving mode and power distribution between the aggregates in regard to in some extend competing objectives like efficiency, emissions or driving comfort. In particular, the operation of the internal combustion engine with only two gear ratios is challenging.
Technical Paper

On Board Diagnostics (OBD) for Multi Topology Hybrid Electric Powertrain Architectures

2018-09-10
2018-01-1827
OBD is extended to electric powertrain components in Hybrid Electric Vehicle (HEV) architectures to monitor all components which influence vehicle emissions and electrical energy consumption. Besides main electric components, like battery, inverter, electric machines including their thermal management, other electric powertrain components and systems need to be evaluated as part of comprehensive component monitoring. The multiple possible HEV topologies require a complex assessment regarding the OBD relevance decisions of the electric drivetrain components or systems. In addition, specificities to OBD perimeter design in the hybrid architecture need to be appropriately chosen. This paper analyzes in detail the OBD regulation requirements for electric propulsion components as in the US regulation, which is an envelope for major global markets like Europe, China, Japan and Korea.
Technical Paper

Fuel Economy Regulations and Technology Roadmaps of China and the US: Comparison and Outlook

2018-09-10
2018-01-1826
In order to address the increasing energy and environmental concerns, China and the US both launched the fuel economy regulations and aim to push the development of technology. In this study, the stringency of CAFC and CAFE regulations and the technology development of two countries are compared. Besides, the optimal technology pathways of America and automakers for the compliance of CAFE regulations are calculated based on the modified VOLPE model, and the results are used as reference for China. The results indicate that the annual regulation improvement rates of China is higher than America and the AIR of China 2015-2020 regulation reaches 6.2% and is the most stringent phase in 10 years from 2015 to 2025. From the perspective of technology, there are still big gaps between China and the US in the applications of advanced fuel saving technologies.
Technical Paper

Exhaust Energy Recovery with Variable Geometry Turbine to Reduce Fuel Consumption for Microcars

2018-09-10
2018-01-1825
The objective proposed by EU to reduce by about 4%/year CO2 emission of internal combustion engines for the next years up to 2030, requires to increase the engine efficiency and accordingly improving the technology. In this framework, hybrid powertrains can have the possibility of a deep market penetration since they may recover energy during brake, allow the engine to operate in better efficiency conditions and with less transients, Moreover, they can recover a large amount of energy lost through the exhaust and use it to reduce fuel consumption. This paper concerns the modification of a conventional two in-line cylinders Diesel engine (440 cm3) adding a variable geometry turbine (VGT) coupled with a generator. The turbine is used to recover exhaust gas energy that otherwise would be lost. The generator, connected to the turbo shaft, converts mechanical energy into electrical energy and is used to charge the vehicle battery or the auxiliaries.
Technical Paper

Torsional Fluctuations Consideration while Design of Synchro Rings

2018-09-10
2018-01-1823
In today’s manual transmissions of car, gearshift system requires high performance with particular emphasis on low effort, minimal travel and positive feel. To meet these targets, a high capacity multi cone synchronizers along with higher co-efficient of friction material used for lower gears. The design of synchronizer with these specifications is influenced by torsional fluctuations from engine. Excessive torsional vibrations leads to wobbling of synchro rings within the peripheral clearances with surrounding parts. Wobbling leads to abrasion wear of frictional area of synchro ring causing grating or crashing noise of gears during shifting. This paper presents the optimization of the multiple cone synchronizer design exposed to excessive torsional vibrations and validation of the same on test bench during development stage instead vehicle level validation.
Technical Paper

Evaluation of Engine Programming to Reduce Fuel Consumption

2018-09-10
2018-01-1757
The goal of this study was to evaluate the potential for reducing fuel consumption of heavy-duty vehicles by modifying their engine power ratings through programming of their engine electronic control units. This paper summarizes the activities, observations, and results obtained from tests conducted on a test track to compare default settings with those optimized for potential economic gains and improved performance. Tests for long-distance and regional transport operations were conducted at constant speed. Results from these tests showed considerable fuel savings, of approximately 7%, when the engine power rating was reduced from 450 hp to 400 hp and speed from 105 km/h to 98 km/h. In these tests, the dynamic performance of the vehicles was not affected by the reduction in power.
Technical Paper

Development of Drive Cycles and Measurement of Fuel Economies of Light Duty Vehicles in Metro Manila

2018-09-10
2018-01-1758
The urban drive cycles for five different light duty vehicles (LDV) are developed in this study. The study presents the methodology in the development of the drive cycles in which the speed profile of the specific type of vehicle is surveyed with an on-board instrument. The speed data is processed using a program to execute the methodology in generating candidate drive cycles. The selected drive cycles are then used in the chassis dynamometer laboratory to estimate the fuel economies of each type of light duty vehicle considered. The developed drive cycles for the different types of light duty vehicles, namely (1) private cars, (2) taxis, (3) public utility jeepneys, (4) UV express, and (5) light duty trucks have average speeds of 17.97 kph, 13.57 kph, 10.87 kph, 14.69 kph and 8.43 kph respectively. The measured fuel economies for all the light duty vehicles tested ranges from 3 to 12 km/liter.
Technical Paper

Farm Tractor Efficiency Gains through Optimized Heavy-Duty Diesel Engine Oils

2018-09-10
2018-01-1752
Modern agriculture has evolved dramatically over the past half century. To be profitable, farms need to significantly increase their crop yields, and thus there are amplified demands on farming equipment. Equipment duty cycles have been raised in scope and duration, as the required output of the agricultural industry to sustain a growing population has stimulated the need for further advances in effective productivity gains on the farm. The mainstay mechanical assistant to the farmer, the tractor, has also evolved with the changes in modern agriculture to meet the requirements of these newer tasks. Larger, more capable vehicles have been introduced to help farmers efficiently meet these demands. At the same time, the current generation of tractor diesel engine lubricants has facilitated high levels of performance in the agricultural equipment market for many years. This is a testament to the role modern lubricants play in productivity in such a critical industry.
Technical Paper

Experimental Investigation of the Effect of Karanja Oil Biodiesel with Cerium Oxide Nano Particle Fuel Additive on Lubricating Oil Tribology and Engine Wear in a Heavy Duty 38.8L,780 HP Military CIDI Diesel Engine

2018-09-10
2018-01-1753
Biodiesel fuels are an alternative to diesel fuel. Biodiesel is an oxygenated, sulphur free, non-toxic, biogradable and renewable fuel. It is derived from vegetable oils. Since straight vegetable oils have quite high viscosity compared to mineral diesel, they have to be modified to bring their combustion-related properties and viscosity closer to mineral diesel. This is done by modifying their molecular structure through a transesterification process. In the present study, a military heavy duty 38.8 liter, 585 kW supercharged, compression ignition diesel injection (CIDI) engine was fuelled with diesel, Karanja oil methyl ester (KOME) biodiesel, and KOME biodiesel with cerium oxide fuel additive, respectively. These were subjected to 100 hours long term endurance tests. Lubricating oil samples, drawn from the engine fuelled with these fuels after a fixed interval of 20 hours, were subjected to elemental analysis.
Technical Paper

0D Modeling of Real-Driving NOx Emissions for a Diesel Passenger Vehicle

2018-09-10
2018-01-1761
NOx emissions from diesel passenger vehicles affect the atmospheric environment. It is difficult to evaluate the NOx emissions influenced by environmental conditions such as humidity and temperature, traffic conditions, driving patterns, etc. In the authors’ previous study, real-driving experiments were performed on city and highway routes using a diesel passenger car with only an exhaust gas recirculation system. A statistical prediction model of NOx emissions was considered for simple estimations in the real world using instantaneous vehicle data measured by the portable emissions measurement system and global positioning system. The prediction model consisted of explanatory variables, such as velocity, acceleration, road gradient, and position of transmission gear. Using the explanatory variables, NOx emissions on the city and highway routes was well predicted using a diesel vehicle without NOx reduction devices.
Technical Paper

Application of Genetic Algorithm for the Calibration of the Kinetic Scheme of a Diesel Oxidation Catalyst Model

2018-09-10
2018-01-1762
In this work, a methodology for building and calibrating the kinetic scheme for the 1D CFD model of a zone-coated automotive Diesel Oxidation Catalyst (DOC) by means of a Genetic Algorithm (GA) approach is presented. The methodology consists of a preliminary experimental activity followed by a modelling, optimization and validation process. The tested aftertreatment component presents zone coating, with the front brick side covered with Zeolites in order to ensure hydrocarbons trapping at low temperature, and Platinum Group Metal (PGM), while the rear brick side presents an alumina washcoat with a different PGM loading. Reactor scale samples representative of each coating zone were tested on a Synthetic Gas Bench (SGB), to fully characterize the component’s behavior in terms of Light-off and hydrocarbons (HC) storage for a wide range of inlet feed compositions and temperatures, representative of engine-out conditions.
Technical Paper

Effects of Bio-Alcohol Fuel Blends on the Aging of Engine Lubricating Oil

2018-09-10
2018-01-1746
Bio-alcohol fuel blends will gain in importance for future mobility. The driving force is the necessary reduction of greenhouse gases and harmful exhaust gas components. The new fuels offer advantages in engine combustion and resulting exhaust emissions because of the short-chained molecules and resulting low C/H ratio as well as the higher oxygen content. The aim of the project is a systematic analysis and evaluation of the effects of two bio-alcohol blends on the lubrication oil ageing of a gasoline-driven Euro 6 passenger car engine. For this reason a test engine was operated with three different fuels: a fossil gasoline (E0) without bio-alcohol components, a blend containing 30% vol ethanol (E30) and a blend containing 15% vol methanol (M15). During the engine test, gas of the cylinder charge and blow-by has been sampled and analyzed by ion chromatography regarding short-chained organic and inorganic acids.
Technical Paper

Numerical Analysis on the Potential of Reducing DPF Size Using Low Ash Lubricant Oil

2018-09-10
2018-01-1760
Diesel particulate filter (DPF) is necessary for diesel engines to meet the increasingly stringent emission regulations. Many studies have demonstrated that the lubricant derived ash has a significant effect on DPF pressure drop and engine fuel economy, and this effect becomes more and more severe with the increasing of operating hours of the DPF because the ash accumulated in the DPF cannot be removed by regeneration. It is reported that most of the DPFs operated with more ash than soot in the filter for more than three quarters of the time during its lifetime [1]. In order to mitigate this problem, the original engine manufacturers (OEM) tend to use an oversized DPF for the engine. However, it will increase the costs of the DPF and reduce the compactness of the engine aftertreatment system.
Technical Paper

The Choice of a Rational Type of Fuel for Technological Vehicles

2018-09-10
2018-01-1759
The article deals with the results of experimental and theoretical studies of the technological vehicle during its work on various types of fuel. The purpose of the work is to choose a rational type of fuel or an energy source for vehicles according to one general criterion. The feature of the proposed methodology is that the indicators of fuel and engine are estimated by the criterion of adaptability of technique to a particular type of fuel. A new approach to environmental safety assessment of technological vehicles while working on different fuels by environmental criterion taking into account the amount of emissions of harmful substances, their maximum permissible concentrations and hazard class. The economic efficiency in the operation of vehicles on alternative fuels is estimated by the criterion of economic efficiency.
X