Refine Your Search

Search Results

Journal Article

Water Recovery and Urine Collection in the Russian Orbital Segment of the International Space Station (Mission 1 Through Mission 17)

2009-07-12
2009-01-2485
The paper summarizes the experience gained with the ISS water management system during the missions ISS-1 through ISS-17 (since November 2, 2000, through October 23, 2008). The water supply sources and structure, consumption and supply balance and balance specifics at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on board the ISS and the need to supplement the station's water supply hardware with a system for water reclamation from urine SRV-U is emphasized. The prospects of regenerative water supply system development are considered.
Journal Article

Integration of Thermal Control Electronics and Monitoring Functions in a Multifunctional Structure

2009-07-12
2009-01-2588
In several industrial fields, the integration of functions is a key technology to enhance the efficiency of components in terms of performance to mass/volume/cost ratio. Concerning the space industry, in the last few years the trend in spacecraft design has been towards smaller, light-weight and higher performance satellites with sophisticated payloads and instrumentation. Increasing power density figures are the common feature of such systems, constituting a challenging task for the Thermal Control System. The traditional mechanical and thermal design concepts are evidencing their limits with reference to such an emerging scenario.
Journal Article

A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

2009-07-12
2009-01-2591
After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Some lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot predict all possible events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew.
Journal Article

On the Establishment of the Analysis and Verification Methods Regarding the Air Ventilation with Very Low Velocity in JEM (KIBO) as the First Manned Space Development in Japan

2009-07-12
2009-01-2552
Japanese Experiment Module (JEM) called KIBO is the first manned space structure in Japan. Among several high technologies of JEM development, achievement of the air ventilation (AV) under the micro gravity was challenging because the requirements were very difficult to meet. The verification test in the module level under the operation of the flight hardware had a serious problem by the natural convection owing to the heat generation by the flight hardware. The analysis had problems how to verify its own validity because the turbulent flow around diffuser exits in addition to the laminar flowfield where the velocity is extremely small. This paper describes the solution of these problems in the analytical and testing verification points of view. As a result, we found our analysis applied to the AV performance could provide the complicated flowfield in low velocity with the effects of turbulent flow as well as natural convection.
Journal Article

A Thermodynamic Evaluation of the Use of Alcohol Fuels in a Spark-Ignition Engine

2009-11-02
2009-01-2621
Although the use of alcohol fuels in spark-ignition engines has been investigated for over 100 years, consistent and thorough thermodynamic evaluations are few. The current work examines the detail thermodynamics of the use of methanol and ethanol by an automotive, spark-ignition engine. Overall engine performance parameters, detail instantaneous quantities, and second law parameters are determined as functions of engine design and operating conditions. In addition, the results for the alcohol fuels are compared to results for isooctane. Results include indicated and brake efficiencies, heat transfer, and exhaust gas temperatures as functions of engine speed and load. Operating conditions include constant equivalence ratio (stoichiometric), MBT spark timing, and constant burn duration. In general, the thermodynamic results are similar for the alcohol fuels and isooctane.
Journal Article

Columbus Thermal Hydraulic Operations with US Payloads

2009-07-12
2009-01-2555
After launch and activation activities, the Columbus module started its operational life on February 2008 providing resources to the internal and external experiments. In March 2008 two US Payloads were successfully installed into Columbus Module: Microgravity Sciences Glovebox (MSG) and a US payload of the Express rack family, Express Rack 3, carrying the European Modular Cultivation System (EMCS) experiment. They were delivered to the European laboratory from the US laboratory and followed few months later by similar racks; Human Research Facility 1 (HRF1) and HRF2. The following paper provides an overview of US Payloads, giving their main features and experiments run inside Columbus on year 2008. Flight issues, mainly on the hydraulic side are also discussed. Engineering evaluations released to the flight control team, telemetry data, and relevant mathematical models predictions are described providing a background material for the adopted work-around solutions.
Journal Article

1-g Suit Port Concept Evaluator 2008 Test Results

2009-07-12
2009-01-2572
The Lunar Electric Rover (LER), which was formerly called the Small Pressurized Rover (SPR), is currently being carried as an integral part of the lunar surface architectures that are under consideration in the Constellation Program. One element of the LER is the suit port, which is the means by which crew members perform Extravehicular Activities (EVAs). Two suit port deliverables were produced in fiscal year 2008: a 1-g suit port concept evaluator for functional integrated testing with the LER 1-g concept vehicle and a functional and pressurizable Engineering Unit (EU). This paper focuses on the 1-g suit port concept evaluator test results from the Desert Research and Technology Studies (D-RATS) October 2008 testing at Black Point Lava Flow (BPLF), Arizona. The 1-g suit port concept evaluator was integrated with the 1-g LER cabin and chassis concepts.
Journal Article

Thermal Simulation of Asteroid Surface Temperature and Yarkowski Effect

2009-07-12
2009-01-2567
The thermal environment on or near the surface of the solar system bodies, such as Near Earth Orbit (NEO) asteroids has important implications on future plans for a variety of solar system explorer missions. These missions aim to study asteroids, the primitive leftover building blocks of the Solar System formation process, to understand and potentially alter the course of an object that may threaten the Earth, or to demonstrate the technology to pave the way for man's return to Earth's Moon and beyond. Previous work to determine the surface temperatures of asteroids has addressed the needs of astronomy by using the IR emission from the asteroid to determine its size. However this simulation assumes a theoretical spherical asteroid and not the complex geometries often observed. The simplification leads to inaccurate temperature prediction of details features of the asteroid surface which are of significance to vehicles and orbit prediction.
Journal Article

Philosophies Applied in the Selection of Spacesuit Joint Range-of-Motion Requirements

2009-07-12
2009-01-2538
Space suits are the most important tool for astronauts working in harsh space and planetary environments; suits keep crewmembers alive and allow them to perform exploration, construction, and scientific tasks on a routine basis over a period of several months. The efficiency with which the tasks are performed is largely dictated by the mobility features of the space suit. For previous space suit development programs, the mobility requirements were written as pure functional mobility requirements that did not separate joint ranges of motion from joint torques. The Constellation Space Suit Element has the goal to make more quantitative mobility requirements that focused on the individual components of ‘mobility’ to enable future suit designers to build and test systems more effectively. This paper details the test planning and selection process for the Constellation space suit pressure garment range of motion requirements.
Journal Article

CFD Study of Ventilation and Carbon Dioxide Transport for ISS Node 2 and Attached Modules

2009-07-12
2009-01-2549
The objective of this study is to evaluate ventilation efficiency regarding to the International Space Station (ISS) cabin ventilation during the ISS assembly mission 1J. The focus is on carbon dioxide spatial/temporal variations within the Node 2 and attached modules. An integrated model for CO2 transport analysis that combines 3D CFD modeling with the lumped parameter approach has been implemented. CO2 scrubbing from the air by means of two ISS removal systems is taken into account. It has been established that the ventilation scheme with an ISS Node 2 bypass duct reduces short-circuiting effects and provides less CO2 gradients when the Space Shuttle Orbiter is docked to the ISS. This configuration results in reduced CO2 level within the ISS cabin.
Journal Article

Analysis of Convective Heat Transfer in the Orbiter Middeck for the Shuttle Rescue Mission

2009-07-12
2009-01-2550
The paper presents the results of a CFD study for predictions of ventilation characteristics and convective heat transfer within the Shuttle Orbiter middeck cabin in the presence of seven suited crewmember simulation and Individual Cooling Units (ICU). For two ICU arrangements considered, the thermal environmental conditions directly affecting the ICU performance have been defined for landing operation. These data would allow for validation of the ICU arrangement optimization.
Journal Article

Evaluation of ANITA Air Monitoring on the International Space Station

2009-07-12
2009-01-2520
ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics, with high time resolution, in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarises the results of ANITA's air analyses and compares results to other measurements acquired on ISS during the operational period.
Journal Article

Counter-Flow Silica-Titania Reactor for the Simultaneous Treatment of Air and Water Contaminated with VOCs

2009-07-12
2009-01-2524
The photocatalytic oxidation of VOCs was investigated using a novel countercurrent flow reactor designed to enable the treatment of toluene present in the gas and the aqueous phases simultaneously. The reactor was packed with silica-titania composites commingled with plastic pall rings. Using this mixed packing style was advantageous as it resulted in a higher UV penetration throughout the reactor. The average UV intensity in the reactor was determined to be 220 μW/g irradiated TiO2. It was found that under dry conditions, the STCs had a high adsorption capacity for toluene; however, this adsorption was completely hindered by the wetting of the STCs when the two phases were flowing simultaneously. The destruction of toluene in the aqueous phase was determined to follow a linear trend as a function of the contaminant concentration.
Journal Article

Proposed Standards and Tools for Risk Analysis and Allocation of Robotic Systems to Enhance Crew Safety during Planetary Surface Exploration

2009-07-12
2009-01-2530
Several space agencies have announced plans to return humans to the Moon in the near future. The objectives of these missions include using the Moon as a stepping-stone towards crewed missions to Mars, to test advanced technology, and to further exploration of the Moon for scientific research and in-situ resource utilization. To meet these objectives, it will be necessary to establish and operate a lunar base. As a result, a wide variety of tasks that may pose a number of crew health and safety risks will need to be performed on the surface of the Moon. Therefore, to ensure sustainable human presence on the Moon and beyond, it is essential to anticipate potential risks, assess the impact of each risk, and devise mitigation strategies. To address this, a nine-week intensive investigation was performed by an international, interdisciplinary and intercultural team on how to maximize crew safety on the lunar surface through a symbiotic relationship between astronauts and robots.
Journal Article

Unique Regeneration Steps for the Sorbent-Based Atmosphere Revitalization System Designed for CO2 and H2O Removal from Spacecraft Cabins

2009-07-12
2009-01-2532
An SBAR system for H2O and CO2 removal from spacecraft cabin air was studied both experimentally and theoretically. An emphasis was placed on its purgeless, deep vacuum regeneration step. Three evacuation steps were studied: 1) single ended depressurization (SED) through the feed end of the bed; 2) simultaneous dual ended depressurization (DED) through both ends of the bed; and 3) simultaneous triple ended depressurization (TED) through both ends of the bed and a port located at some axial position. TED resulted in a lower average bed pressure at the end of evacuation compared to DED, which, in turn caused more CO2 to be removed. An optimal third port location also existed. The use of TED should allow the SBAR bed size to be reduced.
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Journal Article

The Effect of Viscosity Index on the Efficiency of Transmission Lubricants

2009-11-02
2009-01-2632
The world is firmly focused on reducing energy consumption and on increasingly stringent regulations on CO2 emissions. Examples of regulatory changes include the new United States Environmental Protection Agency's (U.S. EPA) fuel economy test procedures which were required beginning with the 2008 model year for vehicles sold in the US market. These test procedures include testing at higher speeds, more aggressive acceleration and deceleration, and hot-weather and cold-temperature testing. These revised procedures are intended to provide an estimate that more accurately reflects what consumers will experience under real world driving conditions. The U.S.
Journal Article

The Shift in Relevance of Fuel RON and MON to Knock Onset in Modern SI Engines Over the Last 70 Years

2009-11-02
2009-01-2622
Since the advent of the spark ignition engine, the maximum engine efficiency has been knock limited. Knock is a phenomena caused by the rapid autoignition of fuel/air mixture (endgas) ahead of the flame front. The propensity of a fuel to autoignite corresponds to its autoignition chemistry at the local endgas temperature and pressure. Since a fuel blend consists of many components, its autoignition chemistry is very complex. The octane index (OI) simplifies this complex autoignition chemistry by comparing a fuel to a Primary Reference Fuel (PRF), a binary blend of iso-octane and n-heptane. As more iso-octane is added into the blend, the PRF is less likely to autoignite. The OI of a fuel is defined as the volumetric percentage of iso-octane in the PRF blend that exhibits similar knocking characteristics at the same engine conditions.
Journal Article

Analysis of DPF Incombustible Materials from Volvo Trucks Using DPF-SCR-Urea With API CJ-4 and API CI-4 PLUS Oils

2009-06-15
2009-01-1781
This paper reports on a field test with 23 Volvo D12C non-exhaust gas recirculation diesel engines using the Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and urea system with Ultra-Low-Sulfur-Diesel (ULSD). This combination will be used to meet the on-highway emission standards for U.S. 2010, Japan 2010, and Europe 2013. Because of future widespread use of DPF-SCR, this study reports on our field experience with this system, and focuses on enhancing our understanding of the incombustible materials which are collected in the DPF with API CJ-4 and API CI-4 PLUS oils. The average weight of incombustibles was lower in the trucks using API CJ-4 oils at 1.0% sulfated ash, than in those using API CI-4 PLUS oils at 1.4% sulfated ash. The difference in weight between the two groups was highly significant. Further, the weight of the incombustibles per kilometer substantially decreased with each subsequent cleaning within a truck.
X