Criteria

Text:
Display:

Results

Viewing 31 to 60 of 110083
2017-09-04
Technical Paper
2017-24-0133
Jelica Pavlovic, Alessandro Tansini, Georgios Fontaras, Biagio Ciuffo, Marcos Garcia Otura, Germana Trentadue, Ricardo Suarez Bertoa, Federico Millo
Plug-in Hybrid Electric Vehicles (PHEVs) are one of the main options for reducing vehicle CO2 emissions and helping vehicle manufacturers (OEMs) to meet the CO2 targets imposed by different Governments from all around the world. In Europe OEMs have introduced a significant number of PHEV models to meet their CO2 target of 95 g/km for passenger cars set for 2021. Fuel consumption and CO2 emissions from PHEVs, however, strongly depend on the way they are used and on the frequency with which their battery is charged by the user. Studies have indeed revealed that in real life, with poor charging behavior from users, PHEV fuel consumption is equivalent to that of conventional vehicles, and in some cases higher, due to the increased mass and the need to keep the battery at a certain charging level.
2017-09-04
Technical Paper
2017-24-0132
Martin Großbichler, Zhen Zhang, Philipp Polterauer, Harald Waschl
To meet current legislation limits, modern diesel engines already achieve very low raw emission levels and utilize additional components for aftertreatment. However, during fast transients still undesired emission peaks can occur for both soot and NOx. These are caused by differences in the in-cylinder conditions between the quasi steady state engine calibration and the transient engine operation, e.g. during tip-ins. These effects become more and more important in view of future RDE emission test cycles. In this work a case study is performed to analyze the potential reduction of transient soot emissions during a specified engine maneuver. An additional target is to investigate potential benefits of a novel in-situ soot sensor based on the Laser Induced Incandescence (LII) principle which offers a high temporal resolution.
2017-09-04
Technical Paper
2017-24-0131
Sergio Mario Camporeale, Patrizia D. Ciliberti, Antonio Carlucci, Daniela Ingrosso
The incoming PostEuro6 regulation and the on-board diagnostics -OBD- pushes the research activity towards the set-up of even more efficient after treatment systems. Nowadays, the most common after treatment system for NOx reduction is the selective catalytic reactor –SCR- . This system requires as an input the value of engine out NOx emission –raw- in order to control the Urea dosing strategy. In this work, a grey box NOx raw emission model based on in-cylinder pressure signal (ICPS) is validated on two standard cycles: MNEDC and WLTC using an EU6 engine at the test bench. The overall results show a maximum relative error of the integrated cumulate value integral of 12.8% and 17.4% for MNEDC and WLTC respectively. In particular, the instantaneous value of relative error is included in the range of ± 10% in the steady state conditions while during transient conditions is less than 20% mainly.
2017-09-04
Technical Paper
2017-24-0138
Giovanni Meccariello, Livia Della Ragione
In the context of a transport sustainability, some solutions could be proposed from the integration of many disciplines, architects, environmentalists, policy makers, and consequently it may be addressed with different approaches. These solutions would be apply at different geographical levels, i.e. national, regional or urban scale. Moreover, the assessment of cars emissions in real use plays a fundamental role for their reductions. This is also the direction of the new harmonized test procedures (WLTP). Furthermore, it is fundamental to keep in mind that the new WLTC cycle will reproduce a situation closer to the reality respect to the EUDC/NEDC driving cycle. In this paper, we will be focused on vehicle kinematic evaluation aimed at valuation of traffic situation and emissions.
2017-09-04
Technical Paper
2017-24-0139
Francesco Barba, Alberto Vassallo, Vincenzo Greco
The aim of the present study is to improve the effectiveness of the engine and aftertreatment calibration process through the critical evaluation of several methodologies available to estimate the soot mass flow produced by diesel engines and filtered by Diesel Particulate Filters (DPF). In particular, the focus of the present study has been the development of a reliable simulation method for the accurate prediction of the engine-out soot mass flow starting from Filter Smoke Number (FSN) measurements executed in steady state conditions, in order to predict the DPF loading considering different engine working conditions corresponding to NEDC and WLTP cycles. In order to achieve this goal, the study was split into two parts: - Correlation between ‘wet soot’ (measured by soot filter weighing) and the ‘dry soot’ (measured by the Micro Soot Sensor MSS).
2017-09-04
Technical Paper
2017-24-0136
Kurtis James Irwin, Roy Douglas, Jonathan Stewart, Andrew Pedlow, Rose Mary Stalker, Andrew Woods
With emission legislations becoming ever more stringent there is an increased pressure on the after treatment systems and more specifically the three-way catalysts. With more recent developments in emission legislations, there is requirement for more complex after-treatment systems and understanding of the ageing process. With future legislation introducing independent inspection of emissions at any time under real world driving conditions throughout a vehicle life cycle this is going to increase the focus on understanding catalyst behaviour during any likely conditions throughout its lifetime and not just at the beginning and end. In recent years it has become a popular approach to use accelerated aging of the automotive catalysts for the development of new catalytic formulations and for homologation of new vehicle emissions.
2017-09-04
Technical Paper
2017-24-0137
Zhen Zhang, Luigi del Re, Richard Fuerhapter
During transients, engines tend to produce substantially higher peak emissions which are the longer the more important as the steady state emissions are better controller. To this end, they must be measurable in an adequate time scale. While for most emissions there are commercially available sensors of sufficient speed and performance, the same is not true for soot, especially for production engines. Against this background, in the last years we have investigated together with a supplier of measurement systems the possible use of a 50Hz sensor based on LII and of the same size of a standard oxygen probe, and the results were very positive, showing that the sensor could recognize transient changes undetected by conventional measurement systems (like AVL Opacimenter or Microsoot) but confirmed e.g. by incylinder 2 color spectroscopy. The higher speed is also due to the position, as the sensor can be mounted above or below the turbine in a turbocharged CI engine.
2017-09-04
Technical Paper
2017-24-0143
Sathaporn Chuepeng, Kampanart Theinnoi, Manida Tongroon
The combustion in reactivity controlled compression ignition (RCCI) mode of diesel engine have been gained more attention as one among other strategies to increase operating range for premixed combustion and to improve fuel economy. A low reactivity fuel such as high octane number fuel, alcohol blends for example, is early fumigated (or injected) and premixed with air prior to induction to the combustion chamber. Later on adjacent to the end of the compression stroke, the diesel fuel as a high reactivity fuel is directly injected into the homogeneous pre-mixture and ignited. This can also promote lower nitrogen oxides and particulate matter emissions. The main aim of this work is to characterize the combustion phenomena and particulate matter in nano-size from the RCCI engine using neat hydrous ethanol as the low reactivity fuel.
2017-09-04
Technical Paper
2017-24-0144
Carlo Beatrice, Maria Antonietta Costagliola, Chiara Guido, Pierpaolo Napolitano, Maria Vittoria Prati
Diesel particulate filter (DPF) is the most effective emission control device for reducing particle emissions (both in mass, PM, and number, PN) from diesel engines, however many studies have reported elevated emissions of nanoparticles (<50 nm) during its regeneration. In this paper the results of an extensive literature search are presented (about 150 reports and scientific papers). During DPF active regeneration most of the literature studies show an increase in the number of the emitted nanoparticles of about 2-3 orders of magnitude compared to the normal operating conditions. Many factors can influence their amount, size distribution, chemical-physical nature (volatiles, semi-volatiles, solid) and the duration of the regenerative event: i.e. DPF load and thermodynamic conditions, lube and fuel sulfur content, engine operative conditions, PN sampling and measurement methodologies.
2017-09-04
Technical Paper
2017-24-0140
Roberto Aliandro Varella, Gonçalo Duarte, Patricia Baptista, Pablo Mendoza Villafuerte, Luis Sousa
Due to the need to properly quantify vehicle emissions in real world operation, Real Driving Emissions (RDE) test procedures will be used for measuring gaseous emissions on new EURO 6 vehicles.at the RDE 1 & 2: Commission Regulation (EU) 2016/427 of 10 March 2016 amending Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles. Updated regulations have been enhanced to define RDE tests boundaries and data analysis procedures, in order to provide an accurate way to obtain representative results. The boundary conditions defined for vehicle testing include external atmospheric temperature, which can range from 0ºC to around 30ºC, for moderate conditions and -7oC up to 35oC for extended conditions in RDE tests. As a result of this range of possible test ambient temperature, pollutant emissions and energy consumption can vary considerably.
2017-09-04
Technical Paper
2017-24-0141
Riccardo Amirante, Elia Distaso, Silvana Di Iorio, Davide Pettinicchio, Paolo Sementa, Paolo Tamburrano, Bianca Maria Vaglieco
It is common knowledge that of all the regulated automotive emissions, particulate emissions are most difficult to quantify as they comprise a complex mixture of particles of varying size and composition, each of which may be influenced by many external factors including engine technology, fuel composition, air-to-fuel ratio, lubricant oil, after-treatment and the act of measurement itself. The aim of the present work is to provide further guidance into better understanding the production mechanisms of such emissions in spark-ignition engines fueled with compressed natural gas. In particular, extensive experimental investigations were designed with the aim to isolate the contribution of the fuel from that of lubricant oil to particle emissions.
2017-09-04
Technical Paper
2017-24-0147
Marco Chiodi, Andreas Kaechele, Michael Bargende, Donatus Wichelhaus, Christian Poetsch
In the competition for the powertrain of the future the internal combustion engine faces tough challenges. Reduced environmental impact, higher mileage, low cost and new technologies are required to maintain its global position in public and private mobility. For decades researchers have been investigating the Homogeneous Charge Compression Ignition (HCCI) promising higher efficiency due to the rapid combustion and therefore low exhaust gas temperatures. Consequently there is no need for a rich mixture to cool the turbocharger under high load. As the combustion does not have a distinguished flame front it is able to burn very lean mixtures, reducing HC and CO emissions. However, until recently, HCCI was considered to be only applicable as a part load process. The 3D engine development tool QuickSim which has been developed at the FKFS in Stuttgart is able to simulate the entire flow path of the engine, including conventional and HCCI combustion.
2017-09-04
Technical Paper
2017-24-0148
Srinivas Padala, Shashank Nagaraja, Yuji Ikeda, Minh Khoi Le
Exhaust gas recirculation (EGR) has proven to be very beneficial for fuel economy improvement as well as knock and emissions reduction. Combining with lean burning, it can help modern gasoline engines to become cleaner, more efficient and meeting the stringent emissions limit. However, there is a practical limit for lean mixture and EGR percentage for current engine due to many constraints, one of which being the ignition source. The Microwave Discharge Igniter (MDI), which generates, enhances and sustains plasma discharge using microwave (MW) resonance was tested to assess its ability in extending these limits. A combination of high-speed Schlieren imaging and pressure measurements were performed for propane-air mixture combustion inside a constant volume chamber to compare the dilution and lean limit between MDI and traditional spark plug. Nitrogen addition was carried out during mixture preparation to simulate the dilution condition of EGR.
2017-09-04
Technical Paper
2017-24-0145
Marco Piumetti, Debora Fino, Nunzio Russo, Samir Bensaid, Melodj Dosa
A set of CeO2 nanocatalysts with different structural properties (nanocubes, nanorods, high-surface area CeO2) was prepared to investigate the shape-dependency activity for two oxidation reactions: the soot combustion under different soot-catalyst contact conditions (namely, in “loose” and “tight” conditions) and the CO oxidation. The physico-chemical properties of the prepared materials were investigated by complementary techniques (XRD, N2-physisorption at -196 °C, H2-TPR, FESEM, TEM, micro-Raman, FT-IR, XPS). As a whole, the best performances in terms of soot combustion have been achieved for the CeO2-nanocubes (SBET = 4 m2g-1), due to the abundance of highly reactive (100) and (110) exposed surfaces. On the other hand, better results in terms of the onset of soot oxidation (T10%) have been obtained for high-surface-area materials (SBET = 75 m2g-1), thus reflecting the key role of the surface area at low reaction temperature.
2017-09-04
Technical Paper
2017-24-0146
Vincent Raimbault, Jerome Migaud, David Chalet, Michael Bargende, Emmanuel Revol, Quentin Montaigne
Upcoming regulations and new technologies are challenging the internal combustion engine and increase the pressure on car manufacturers to further reduce powertrain emissions. Indeed, RDE pushes engineering to keep low emissions not only at the bottom left of the engine map but in the complete range of load and engine speeds. This means for gasoline engines that the strategy used to increase the low end torque and power while moving out of lambda one conditions is no longer sustainable. For instance scavenging, which helps to increase the enthalpy at the turbine at low engine speed cannot be applied and thus leads to a reduction in low-end torque. Similarly, enrichment to keep the exhaust temperature sustainable in the exhaust tract components cannot be applied any more. The proposed study aims to provide a solution to keep the low end torque while maintaining lambda at 1. The tuning of the air intake system helps to improve the volumetric efficiency using resonance charging effects.
2017-09-04
Technical Paper
2017-24-0117
Fabio Scala, Enzo Galloni, Gustavo Fontana
In this paper, the behavior of a downsized spark-ignition engine firing with alcohol/gasoline blends has been analyzed. In particular, different butanol-gasoline and ethanol-gasoline blends have been examined. All the alcohol fuels here considered are derived from biomasses. In the paper, a numerical approach has been followed. A one dimensional model has been tuned in order to simulate the engine operation when it is fueled by alcohol/gasoline mixtures. Numerous operating points, characterized by two different engine speeds and several low-medium load values, have been analyzed. The objective of the numerical analysis is determining the optimum spark advance for different alcohol percentages in the mixtures at the different engine operating points. Once the best spark timing has been selected, the differences, in terms of both indicated torque and efficiency, arising in the different kinds of fueling have been evaluated.
2017-09-04
Technical Paper
2017-24-0116
Ekarong Sukjit, Pansa Liplap, Somkiat Maithomklang, Weerachai Arjharn
In this study, two oxygenated fuels consisting of butanol and diethyl ether (DEE), both possess same number of carbon, hydrogen and oxygen atom but difference functional group, were blended with the waste plastic pyrolysis oil to use in a 4-cylinder direct injection diesel engine without any engine modification. In addition, the effect of castor oil addition to such fuel blends was also investigated. Four tested fuels with same oxygen content were prepared for engine test, comprising DEE16 (84% waste plastic oil blended with 16% DEE), BU16 (84% waste plastic oil blended with 16% butanol), DEE11.5BIO5 (83.5% waste plastic oil blended with 11.5% DEE and 5% castor oil) and BU11.5BIO5 (83.5% waste plastic oil blended with 11.5% butanol and 5% castor oil). The results found that the DEE addition to waste plastic oil increased more emissions than the butanol addition at low engine operating condition.
2017-09-04
Technical Paper
2017-24-0115
Martin Pechout, Jan Czerwinski, Martin Güdel, Michal Vojtisek-Lom
In this study, the combustion of butanol, neat and mixed with gasoline, was investigated on a 0.6 liter two-cylinder spark ignition engine with fully adjustable fuel injection and spark timing, coupled with an eddy current dynamometer. Two isomers of butanol, n-butanol and iso-butanol, were examined. Butanol can be produced from non-food renewable resources and is one of the fuels exploited in the search of energy security and independence and of replacement of fossil fuels. Compared to the traditionally used ethanol, butanol does not exhibit hygroscopic behaviour, is chemically less aggressive and has higher energy density. On other hand, different laminar burning velocity and higher boiling temperature of butanol, compared to gasoline, requires some countermeasures to keep the engine operation reliable and efficient.
2017-09-04
Technical Paper
2017-24-0114
Michel Cuijpers, Michael Golombok, Hylke Van Avendonk, Michael Boot
Recently imposed sulfur caps on shipping fuels in so-called sulfur emission control areas (SECA) are forcing shipping companies to sail on more or less automotive grade diesel in lieu of the considerably less expensive but sulfur-laden heavy fuel oil (HFO). This development is an opportunity for a bio-based substitute, given that most biomass is sulfur free by default. Cracking biomass to an HFO substitute will require both lower capital and operational expenditures - currently less viscous automotive grade fuels are the targeted product. Lower production costs should translate directly into higher profits for biorefineries. We demonstrate the principle of producing a bio-based low sulfur HFO (LSHFO) by cracking lignin - a residual phenolic polymer from cellulosic bioethanol production – with a novel subcritical solvolysis reaction in a mixture of water and ethylene glycol monobutyl ether or EGBE.
2017-09-04
Technical Paper
2017-24-0121
Ivan Arsie, Giuseppe Cialeo, Federica D'Aniello, Cesare Pianese, Matteo De Cesare, Luigi Paiano
The demand for high NOx conversion efficiency and low tailpipe ammonia slip for urea-based selective catalytic reduction (SCR) systems has substantially increased in the past decade, as NOx emission legislations for Diesel engines are becoming more stringent than ever before. Model-based control strategies are fundamental to meet the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. In this paper, a control oriented model of a Cu-zeolite urea-selective catalytic reduction (SCR) system for automotive diesel engines is presented. The model is derived from a quasi-dimensional four-state model of the urea-SCR plant. In order to make it suitable for the real-time urea-SCR management, a reduced order one-state model has been developed, with the aim of capturing the essential behavior of the system with a low computational demand. The model estimates the relevant species (i.e. NO, NO2 and NH3) independently.
2017-09-04
Technical Paper
2017-24-0120
Matthew Keenan
It appears that the earliest public domain reference regarding automotive catalysis was from January 1959 and written by GM and presented at the annual SAE meeting in Detroit. The publication related hydrocarbon control of a gasoline vehicle using an oxidation catalyst. The results showed 85 – 100% hydrocarbon reduction over the temperature range 600 – 750oC, under different vehicle operating conditions from idle to accelerations. The catalyst contained no precious metals but the full chemical composition was not disclosed. However, interestingly air was required to be pumped into the exhaust as the application didn’t always operate under stoichiometric conditions, but operated periodically under rich conditions. Hence oxygen was required to oxidise the gasoline derived hydrocarbons.
2017-09-04
Journal Article
2017-24-0118
Marius Zubel, Stefan Pischinger, Benedikt Heuser
Within the cluster of excellence “Tailor-Made Fuels from Biomass” at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for Diesel engine combustion. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines. For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load, the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
2017-09-04
Technical Paper
2017-24-0119
Jos Feijen, Gerard Klink, Ed Jong, Andreas Schmid, Niels Deen, Michael Boot
Second generation biomass is an attractive renewable feedstock for transport fuels. Its sulfur content is generally negligible and the carbon cycle is reduced from millions to tens of years. One hitherto non-valorized feedstock are so-called humins, a residual product formed in the conversion of sugars to platform chemicals, such as hydroxymethylfurfural and methoxymethylfurfural, intermediates in the production of FDCA, a building block used to produce the polyethylene furanoate (PEF) bottle by Avantium. The focus of this study is to investigate the spray combustion behavior of humins as a renewable alternative for heavy fuel oil (HFO) under large two-stroke engine-like conditions in an optically accessible constant volume chamber.
2017-09-04
Technical Paper
2017-24-0126
Christian Zöllner, Dieter Brueggemann
The removal of particulate matter (PM) from diesel exhaust is necessary to protect the environment and human health. To meet the strict emission standards for diesel engines an additional exhaust aftertreatment system is essential. Diesel particulate filters (DPF) are established devices to remove emitted PM from diesel exhaust. But the deposition and the accumulation of soot in the DPF influences the filter back pressure and therefore the engine performance and the fuel consumption which is why a periodical regeneration through PM oxidation is necessary. The oxidation behavior should result in an effective regeneration mode that minimizes the fuel penalty and limits the temperature rise while maintaining a high regeneration efficiency. Excessive and fast regenerations have to be avoided as well as uncontrolled oxidations leading to damages of the filter and fuel penalty.
2017-09-04
Technical Paper
2017-24-0125
Angelo Algieri, Pietropaolo Morrone, Jessica Settino, Teresa Castiglione, Sergio Bova
In the last years automotive researchers and manufacturers are focusing a large attention on the development and the optimisation of aftertreatment systems able to meet the ever more severe regulations on exhaust gas emissions. The scientific literature highlights that all the emission control systems require proper operating temperatures and an accurate flow control to guarantee reliable and effective processes. In particular, to assure the suitable thermal level for efficient treatments, the addition of supplemental fuel is often necessary, with a not negligible penalty on the global engine efficiency. To reduce this effect, innovative reversed flow converters have been proposed over the past few years. They are based on the cyclic inversion of the exhaust gas between the two system ends (active flow control). Conversely, unidirectional flow within the aftertreatment system represents the technical solution largely adopted in practice (passive flow control).
2017-09-04
Technical Paper
2017-24-0124
Michael Maurer, Peter Holler, Stefan Zarl, Thomas Fortner, Helmut Eichlseder
To fulfil the new European real driving emissions (RDE) legislation, the LNT operation strategy – especially for DeNOx events – has to be optimized to minimize NOx as well as CO and HC emissions. On one hand the DeNOx purges should be long enough to fully regenerate the lean NOx trap, on the other hand the purges should be as short as possible to reduce the fuel consumption penalty from rich mode. Fundamental experiments have been conducted on a synthetic-gas-test-bench, purposely designed to test LNT catalysts. This methodology allowed to remove NOx from the gasfeed after the lean storage phase. The actually reduced amount of NOx could be easily calculated from the NOx storage before a regeneration minus the NOx that was desorbed during the DeNOx event and afterwards thermally desorbed NOx. To show the effect of aging method on the regeneration characteristics, tests have been performed with a in a car endurance run aged LNT and a synthetic hydrothermally aged LNT.
2017-09-04
Technical Paper
2017-24-0123
Christopher Eck, Futoshi Nakano
Small commercial vehicles (SCV) with Diesel engines require efficient exhaust aftertreatment systems to reduce the emissions while keeping the fuel consumption and total operating cost as low as possible. To meet current emission legislations in all cases, a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) and some NOx treatment device (e.g. a lean NOx trap or selective catalytic reduction, SCR) are required. Creating a cost-effective SCV also requires to keep the cost for the aftertreatment system as low as possible because the contribution to total vehicle cost is high. By using more sophisticated and more robust operating strategies and control algorithms, the hardware cost can be reduced. To keep the calibration effort at a low level, it is necessary to apply only algorithms which have a time-efficient calibration procedure. This paper will focus on the active regeneration of the DPF.
2017-09-04
Technical Paper
2017-24-0129
Vladimir Merzlikin, Svetlana Parshina, Victoria Garnova, Andrey Bystrov, Alexander Makarov, Sergey Khudyakov
The core of this paper is reduction of exhaust emission and increase of diesel efficiency due to application of microstructure ceramic semitransparent heat-insulating coatings (SHIC). The authors conducted experimental study of thermal state of internal-combustion engine piston head with a heat-insulating layer formed by plasma coating method. The paper presents physical and mathematical simulation of improved optical (transmittance, reflectance, absorption, scattering) and thermo radiative (emittance) characteristics determining optimal temperature profiles inside SHIC. The paper considers the effect of subsurface volumetric heating up and analyzes temperature maximum position inside subsurface of this coating. Decrease of SHIC surface temperature of the coated piston in comparison with temperature of traditional opaque heat-insulating coatings causes NOx emission reduction.
2017-09-04
Technical Paper
2017-24-0130
Antonio Paolo Carlucci, Marco Benegiamo, Sergio Camporeale, Daniela Ingrosso
Nowadays, In-Cylinder Pressure Sensors (ICPS) have become a mainstream technology that promises to change the way the engine control is performed. Among all the possible applications, the prediction of raw (engine-out) NOx emissions would allow to eliminate the NOx sensor currently used to manage the after-treatment systems. In the current study, a semi-physical model already existing in literature for the prediction of engine-out nitric ox-ide emissions based on in-cylinder pressure measurement has been improved; in particular, the main focus has been to improve nitric oxide prediction accuracy when injection timing is varied. The main modification introduced in the model lies in taking into account the turbu-lence induced by fuel spray and enhanced by in-cylinder bulk motion.
2017-09-04
Technical Paper
2017-24-0128
Lauretta Rubino, Jan Piotr Oles, Antonino La Rocca
Environmental authorities such as EPA, VCA have enforced stringent emissions legislation governing air pollutants released into the atmosphere. Of particular interest is the challenges introduced by the limit on particulate number (PN) counting (#/km) and real driving emissions (RDE) testing; with the Euro 6c emissions legislation being shortly introduced for the gasoline direct injection engines. Gasoline particulate filters (GPF) are considered to be the most immediate solution. While engine calibration and testing over the NEDC allows the limits to be met, real driving emission and cold start represent a challenge. The present work focuses on an experimental durability study on road under real word driving conditions. Two set of experiments were carried out. The first study analyzed a Gasoline Particulate Filter (GPF) (2,4 liter, diameter 5,2” round) installed in underfloor (UF) position driven for up to 200.000 km.
Viewing 31 to 60 of 110083