Refine Your Search

Search Results

Technical Paper

Electromagnetic Analysis of Permanent Magnet Brushed DC Motor for Automotive Applications—Part 1

2021-02-11
2021-01-5001
Permanent magnet brushed DC (PMBDC) motors are mostly preferred in many automotive applications because of better power density and easier control. Five different automotive applications such as electric parking brake (EPB), power seat, power window, sunroof drive, and tire air pump are chosen and discussed in this paper. A step-by-step electromagnetic analysis is carried out for all the designed models. Low-cost ferrite-based magnets are used for cost reduction keeping the efficiency as high above 77% in all the models. Comparison on performance and cost are discussed in the conclusion section.
Technical Paper

Electromagnetic Analysis of Permanent Magnet Brushed Direct Current Motors for Automotive Applications—Part 2

2021-02-11
2020-01-5229
This paper describes the modelling and electromagnetic analysis of Permanent Magnet Brushed Direct Current (PMBDC) motor using Finite Element Analysis (FEA) software packages. The designed motors referred in this analysis are fit for use in applications of the electronic throttle control and exhaust gas recirculation in automobiles. Performances of the designed PMBDC models are compared with the traditionally used machines. Three PMBDC models with different operating characteristics are proposed for the two applications. Each model is suitable for use in both applications. Cost analysis of the motors is also carried out, and comparison with the traditionally used machines is done.
Technical Paper

Electromagnetic Bolt Inserter

2011-10-18
2011-01-2775
Interference bolts are widely used in aircraft assembly. Electroimpact has used its Low voltage Electromagnetic Riveter (LVER) technology to automatically swage collars on these bolts. The bolts are installed using two process tools, a percussive bolt inserter and the EMR. The bolt inserter inserts the bolt and the EMR swages the collar. This increased productivity over manual installation, but there was still production time to be saved. The Electromagnetic Bolt Inserter (EMB) was designed to increase production rate even more when installing bolts and swaging a collar onto the bolt. The EMB combines the great benefits of Electroimpact's Low Voltage Electromagnetic riveting technology with a bolt inserter.
Technical Paper

Electromagnetic Bolt Inserter

2012-09-10
2012-01-1880
The Electromagnetic Bolt Inserter (EMB) is a new tool that combines functions that on previous machines were performed by two tools, a bolt inserter followed by an EMR. By combining the operations of two tools in one the processing time for the wing spar is reduced. The tool incorporates quality checks for bolt length, stake height and bolt insert height.
Journal Article

Electromagnetic Characteristic Comparison of Superconducting Synchronous Motor Characteristics for Electric Aircraft Propulsion Systems

2019-09-16
2019-01-1912
This paper describes the comparison of electromagnetic characteristics of two different superconducting-motor structures for electrified aircraft propulsion systems. Future electrified aircraft demand higher output (over 16 kW/kg) and higher efficiency (> 98%) for their motors in comparison with current ones. To satisfy the demands, two kinds of superconducting motors are dealt in this study: one is partially superconducting motors (PSCMs), made of superconducting field coils and copper armature windings; the other is the fully superconducting motors (FSCMs) made of superconducting field/armature windings. They are cooled at 20 K with liquid hydrogen. We designed these two motors with finite element method to obtain the output density of 16-20 kW/kg for future electrified propulsion systems. We selected 3.0- and 5.0 MW superconducting motors, considering the application to aircraft for almost 180 passengers and 44 MW rated power for take-off.
Technical Paper

Electromagnetic Compatability Management Problem

1963-01-01
630242
This paper emphasizes the need for all people concerned in the design and operation of electronic military devices to recognize and take into account the existence of problems in electromagnetic compatibility. The Electromagnetic Compatibility Program of the Dept. of Defense is described, and numerous interdependent aspects of the program that require careful management attention are touched upon.
Technical Paper

Electromagnetic Compatibility (EMC) - A New Dimension in Electronic System Qualification

1982-02-01
820069
Susceptibility of electronic systems to the electromagnetic environment of the automotive vehicle has opened a new dimension in electronic system qualification. Electromagnetic compatibility testing of these systems must be implemented to assure proper operation in the real world. Methods of reproducing the electromagnetic environment under controlled conditions and techniques for subjecting electronic systems to this environment are reviewed. Current methods of improving system electromagnetic immunity are also discussed.
Technical Paper

Electromagnetic Compatibility (EMC) Analysis for e-Motors and Controllers of Electric Two-Wheelers

2024-01-16
2024-26-0098
The Indian government has been promoting electric vehicles through various policy initiatives, such as offering incentives and subsidies to EV manufacturers and consumers, establishing charging infrastructure across the country, and setting ambitious targets for EV adoption. These measures aim to reduce the dependence on imported fossil fuels, mitigate air pollution, and promote sustainable mobility. As a result, the demand for electric vehicles across India is steadily increasing, and the country is emerging as a lucrative market for EVs globally. An electronically commuted brushless DC (BLDC) motor usually functions for traction in electric two-wheelers. Electric vehicles need to comply with electromagnetic compatibility (EMC) requirements. During the EMC compliance of electric two-wheelers, it is certain that the BLDC motor and its controller play an important role.
Technical Paper

Electromagnetic Compatibility (EMC) in the Off-Highway Vehicle: Part IV Electronic Design for EMC

1993-09-01
932429
Electromagnetic compatibility (EMC) design considerations have a vital role in the proper functioning of the electronic circuits and systems of a modern off-highway vehicle (OHV). Careful planning is needed in developing the electronic systems that operate the various functions and tasks on these vehicles. Incorporation of EMC in a system design gives that system the quality of reliability; that is, the system will have reduced emissions and be less susceptible to radiated and conducted electromagnetic energy. This paper provides ideas, concepts, and guidelines that the designer of OHV control circuitry can use for incorporation of EMC at the beginning of a design project.
Technical Paper

Electromagnetic Compatibility (EMC) of Electronic Devices with Near Field Communication (NFC) for Use in Aircraft

2017-09-19
2017-01-2107
For an “end-to-end passenger experience that is secure, seamless and efficient” the International Air Transport Association (IATA) proposes Near Field Communication (NFC) and a single token concept to be enablers for future digital travel. NFC is a wireless technology commonly utilized in Portable Electronic Devices (PEDs) and contactless smart cards. It is characterized by the following two attributes: a tangible user interface and secured short range communication. While manufacturers are currently adapting PED settings to enable NFC in the flight mode, the integration and use of this technology in aircraft cabins still remains a challenge. There are no explicit qualification guidelines for electromagnetic compatibility (EMC) testing in an aircraft environment available and there is a lack of a detailed characterization of NFC equipped PEDs.
Technical Paper

Electromagnetic Compatibility Assessment of Electric Vehicles During DC-Charging with European Combined Charging System

2024-07-02
2024-01-3008
The ongoing energy transition will have a profound impact on future mobility, with electrification playing a key role. Battery electric vehicles (EVs) are the dominant technology, relying on the conversion of alternating current (AC) from the grid to direct current (DC) to charge the traction battery. This process involves power electronic components such as rectifiers and DC/DC converters operating at high switching frequencies in the kHz range. Fast switching is essential to minimize losses and improve efficiency, but it might also generate electromagnetic interferences (EMI). Hence, electromagnetic compatibility (EMC) testing is essential to ensure reliable system operations and to meet international standards. During DC charging, the AC/DC conversion takes place off-board in the charging station, allowing for better cooling and larger components, resulting in increased power transfer, currently up to 350 kW.
Technical Paper

Electromagnetic Compatibility Recommendations for Electric Vehicles

1982-02-01
820402
This paper provides an overview of electromagnetic compatibility considerations between battery powered, automotive type, electric vehicles and other electrical and electronic services. A brief historical background is provided along with a review of test data and available standards. The paper recommends that despite procedural difficulties, SAE J551 should be used to measure and compare electromagnetic radiation from electric vehicles. Similarly, SAE J1113 should be used to measure electromagnetic susceptibility. The paper also recommends that acceptable procedures for determining electromagnetic compatibility of electric vehicles and other services be more fully developed.
Technical Paper

Electromagnetic Compatibility and Interference - Design Methodology, Challenges and Guidelines for Avionics Product and Systems

2017-09-19
2017-01-2118
Avionics industry is moving towards more electric & lightweight aircrafts. Electromagnetic effects becomes significantly challenging as materials starts moving towards composite type. Traditional methods for controlling EMC will not be sufficient. This shift increases the complexity of in-flight hardware elements for EMI/EMC control. This paper discusses the need for EMI/EMC Control and brings out the analysis & applicability of various EMI/EMC standards in aerospace, commercial and industrial electronic products, provides comparative study with respect to levels. The study include various sections of DO-160 and applicable guidelines for controlling EMI/EMC with respect to LRU (Line Replaceable Unit) & wire/cable harnesses. Also presents guidelines with respect to shielding of components, selection of components, grounding schemes, filter topologies and layout considerations.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle

1991-09-01
911791
The key words in the marketplace for off-highway vehicles are durability, performance, and efficiency. A manufacturer of these vehicles recognizes that one way to successfully address these needs is by a well thought through electronics design. With the computer sophistication now being incorporated into off-highway vehicles, engineers must work closely to assure electromagnetic compatibility (EMC) of the entire system. A properly established EMC program extending from concept to final design will support each of a product's specified operations and still function as an integrated whole. This paper describes the process for designing the EMC for an off-highway vehicle.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle Part II: Electromagnetic Immunity (EMI)

1992-09-01
921653
Electromagnetic immunity (EMI) for off-highway vehicles (OHV) is a vehicle's ability to resist radiated and conducted electromagnetic interference. Interference can originate within the OHV from the various systems designed to control its operational functions; external sources can also cause serious disruption of the electronic control mechanisms. Knowledge of how and where interferences originate gives the electronic designer insight into how to avoid the pitfalls which can cause malfunctions. Verification of designs through testing will ensure that safety and reliability are built into every OHV produced. This paper discusses the mechanisms that cause susceptibility of electronic circuits to electromagnetic interference, and presents test methods to help the designer improve circuit design and verify the immunity of the complete vehicle. This is the second in a series of papers on electromagnetic compatibility (EMC) in the off-highway vehicle.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle Part III: Electromagnetic Emissions (EME)

1992-09-01
921654
Electromagnetic emissions (EME) from vehicles and their effect on broadcast radio and television were studied as early as 1944. Their original effect was significantly reduced by the early 1960s. Today, ignition noise (broadband) and vehicular micro-processor-controlled system noise (narrowband) are interfering with Land Mobile (two-way) communication services and other devices such as computers. Two SAE test methods, J551 and J1816, are used to measure this EME. Under development are methods to measure conducted EME on vehicle signal wiring and power input leads. This paper discusses EME measurement methods, provides insight into the sources of EME problems, and gives information on the test instrumentation used to make these measurements. This paper is the third in a series of papers on electromagnetic compatibility (EMC) in the off-highway vehicle. The first paper was an overview of a complete EMC program with discussion of several important segments.
Technical Paper

Electromagnetic Compatibility of Automotive Vehicles-An Analysis of Possible Assurance Methods

1978-02-01
780855
This paper describes a systematic decision making process applied to the field of Electromagnetic Compatibility of automotive vehicles. It identifies objectives and classifies them by priority. It describes various mechanizations of possible assurance methods. A matrix of alternate mechanizations and objectives which they meet is assembled and the best alternate is identified.
Technical Paper

Electromagnetic Compatibility of Conductive Heat Reflecting Automotive Windows

2009-04-20
2009-01-1143
One of the challenges of automotive designs which utilize heat reflecting glazing is the conductivity of the reflective coating. Significant attenuation of electromagnetic energy occurs when devices which send or receive signal through the glazing are mounted on or very near heat reflecting windows. A number of methods are available to maintain electromagnetic compatibility and the function of these and other devices in the passenger compartment which communicate with devices outside of the vehicle.
Technical Paper

Electromagnetic Compatibility of Direct Current Motors in an Automobile Environment

2005-04-11
2005-01-0637
As the volume and complexity of electronics increases in automobiles, so does the complexity of the electromagnetic relationship between systems. The reliability and functionality of electronic systems in automobiles can be affected by noise sources such as direct current (DC) motors. A typical automobile has 25 to 100+ DC motors performing different tasks. This paper investigates the noise environment due to DC motors found in automobiles and the requirements that automobile manufacturers impose to suppress RF electromagnetic noise and conducted transients.
Technical Paper

Electromagnetic Compliance Issues of Project Oculus

2005-10-03
2005-01-3394
Project Oculus, an experimental configurable sensor platform for deploying airborne sensors on a C-130 aircraft, is currently in its pre-flight testing phase. The electronics driving the platform are available commercially off the shelf (COTS) and as such are not automatically rated to comply with stringent military electromagnetic standards as defined in MIL-STD-461. These COTS electronics include efficient switching power converters, variable frequency motor drives (VFD), and microprocessor based equipment, all of which can present electromagnetic interference (EMI) issues. Even in a design where EMI issues were not considered up front, it is often possible to bring the overall configuration into compliance. Switching and digital clock signals produce both conducted and radiated noise emissions. Long cable runs and enclosure apertures become noise transmitting antennas. Large switching currents place noise on the power lines causing interference with other equipment.
X