Refine Your Search

Search Results

Technical Paper

Studies on Steering Feeling Feedback System Based on Nonlinear Vehicle Model

2017-03-28
2017-01-1494
The steer-by-wire system has been widely studied due to many advantages such as good controllability. In the system, the steering column is cancelled and the driver can't feel the feedback torque (also called steering feeling) coming from the ground. Therefore a steering feeling feedback system is needed. In this paper, we propose a simple method to calculate desired feedback torque based on a nonlinear 2DOF vehicle model. The vehicle model contains the nonlinearity of tire. So that the proposed method is also appropriate for big acceleration conditions. Besides that, the properties of steering system such as friction and stiffness are also taken into consideration. As for conventional steering system, driver can only feel part of the feedback torque due to the power assist system. In order to provide steering feeling similar to conventional steering system, a weighting function is proposed to compensate the influence of power assist system.
Technical Paper

Structural Strength Verification of Rubber Ended Leaf Spring Suspension in Commercial Vehicle via FEM

2017-03-28
2017-01-1495
At the time of invention of road coaches, the vehicle consisted only of an axle with wheels and a body attached. Smooth roads were built for a better ride comfort however they were not consistent. The road coaches were too bumpy and uncomfortable for the passenger along with the driver who was not able to control the vehicle. That's why the engineers had to shift their attention to the suspension system for a better ride comfort and handling. The technology has advanced with time so as the suspension system. Rubber ended type leaf spring is one of the suspension system types available in the industry. The main function of a suspension in order of importance is as below: 1 Acts as a cushioning device ensuring the comfort of the driver and passengers; 2 Maximizes the contact between the tires and the road surface to provide steering stability with good handling; 3 Protects the vehicle itself and any cargo or luggage from damage and wear.
Technical Paper

Design of A New Weight and Cost Efficient Torsion Profile for Twistbeam Suspension

2017-03-28
2017-01-1491
For long automakers around the globe are trying to reduce weight and cost of the components in order to make vehicles more cost and fuel efficient. This paper deals with same problem for rear twist beam for an upcoming vehicle, the task was to reduce the weight and cost of the twist beam structure without compromising on attributes as compared to the surrogate part. This problem was solved by inventing a new torsion profile and gusset combination which uses shape instead of thickness to use material more efficiently thereby reducing weight and cost. This invention has been successfully patented as well.
Technical Paper

A Low Cost Rolling Road for Tire Measurements in a Small Eiffel Wind Tunnel

2017-03-28
2017-01-1504
Wind tunnel aerodynamic testing involving rolling road tire conditions can be expensive and complex to set up. Low cost rolling road testing can be implemented in a 0.3m2 Eiffel wind tunnel by modifying a horizontal belt sander to function as a moving road. This sander is equipped with steel supports to hold a steel plate against the bottom of the wind tunnel to stabilize the entire test section. These supports are bolted directly into the sander frame to ensure minimal vibrational losses or errors during testing. The wind tunnel design at the beginning of the project was encased in a wooden box which was removed to allow easier access to the test section for installation of the rolling road assembly. The tunnel was also modified to allow observers to view the testing process from various angles.
Technical Paper

Parameterization Process of the Maxwell Model to Describe the Transient Force Behavior of a Tire

2017-03-28
2017-01-1505
The present technical article deals with the modeling of dynamic tire forces, which are relevant during interactions of safety relevant Advanced Driver Assistance Systems (ADAS). Special attention has been paid on simple but effective tire modeling of semi-physical type. In previous investigations, experimental validation showed that the well-known first-order Kelvin-Voigt model, described by a spring and damper element, describes good suitability around fixed operation points, but is limited for a wide working range. When aiming to run vehicle dynamics models within a frequency band of excitation up to 8 Hz, these models deliver remarkable deviations from measured tire characteristics. To overcome this limitation, a nonlinear Maxwell spring-damper element was introduced which is qualified to model the dynamic hardening of the elastomer materials of the tire.
Technical Paper

Heavy Truck Trailer Skid Wear as a Function of ABS Brake Configuration

2017-03-28
2017-01-1503
Most commercial heavy-duty truck trailers are equipped with either a two sensor, one modulator (2S1M) or four sensors, two modulator (4S2M) anti-lock braking system (ABS). Previous research has been performed comparing the performance of different ABS modules, in areas such as longitudinal and lateral stability, and stopping distance. This study focuses on relating ABS module type and wheel speed sensor placement to trailer wheel lock-up and subsequent impact to tire wear for tandem axle trailers with the Hendrickson air-ride suspension. Prior to tire wear inspection, functionality of the ABS system was testing using an ABS scan tool communicating with the SAE J1587 plug access port on the trailer. Observations were documented on trailers using the 2S1M system with the wheel speed sensor placed on either the front or rear axle of a tandem pair.
Technical Paper

Mathematical Analysis of Tire Delamination & Rupture Failures

2017-03-28
2017-01-1509
We examine the characteristics, properties and potential idealized delamination failure modes of tires in this work. Calculations regarding tire failure stresses during tire failure scenarios, as well as during normal operation, are made. The calculations, though idealized, indicate that large chassis loads can result from the idealized failures.
Technical Paper

Acceleration Testing of 2016 Freightliner Cascadia with Automated Manual Transmission in Auto Mode

2017-03-28
2017-01-1426
The time/distance relationship for a heavy truck accelerating from a stop is often needed to accurately assess the events leading up to a collision. Several series of tests were conducted to document the low speed acceleration performance of a 2016 Freightliner Cascadia truck tractor equipped with a 12-speed automated manual transmission in Auto Mode. Unlike tests in previous papers, the driver never manually shifted gears. These tests included three trailer load configurations and two different acceleration rates. Data were gathered with both a VBOX and with the Detroit Diesel Diagnostic Link (DDDL) software.
Technical Paper

Automating Regional Rib Fracture Evaluation in the GHBMC Detailed Average Seated Male Occupant Model

2017-03-28
2017-01-1428
Computational modeling of the human body is increasingly used to evaluate countermeasure performance during simulated vehicle crashes. Various injury criteria can be calculated from such models and these can either be correlative (HIC, BrIC, etc.) or based on local deformation and loading (strain-based rib fracture, organ damage, etc.). In this study, we present a method based on local deformation to extract failed rib region data. The GHMBC M50-O model was used in a Frontal-NCAP severity sled simulation. Failed Rib Regions (FRRs) in the M50-O model are handled through element deletion once the element surpasses 1.8% effective strain. The algorithm central to the methodology presented extracts FRR data and requires 4-element connectivity to register a failure. Furthermore, the FRRs are localized to anatomical sections (Lateral, Anterior, and Posterior), rib level (1,2,3 etc.) and element strain data is recorded.
Technical Paper

Deceleration Rates of Vehicles with Disabled Tires

2017-03-28
2017-01-1427
Tire disablement events can cause a drag force that slows a vehicle. In this study, the magnitude of the deceleration was measured for different phases of 29 high speed tire tread separation and air loss tests. These deceleration rates can assist in reconstructing the speed of a vehicle involved in an accident following a tire disablement.
Technical Paper

Considerations for Head-Injury Categorization via NASS Analysis

2017-03-28
2017-01-1430
The present study had three objectives: (1) define a reasonable number of categories to bin head injuries, (2) develop an overarching risk function to estimate head-injury probability based on injury probabilities pertaining to those subordinate categories, and (3) assess the fidelity of both the overarching function and approximations to it. To achieve these objectives, we used real-world data from the National Automotive Sampling System (NASS), pertaining to adult drivers in full-engagement frontal crashes. To provide practical value, we factored the proposed US New Car Assessment Program (US NCAP) and the corresponding Request for Comments from the government. Finally, the NASS data stratifications included three levels of injury (AIS1+, AIS2+, AIS3+), two levels of restraint (properly-belted, unbelted), and two eras based on driver-airbag fitment (Older Vehicles, Newer Vehicles).
Technical Paper

Evaluation of Biofidelity of the Human Body Model Morphed to Female with Abdominal Obesity in Frontal Crashes

2017-03-28
2017-01-1429
This paper aims to evaluate the biofidelity of a human body FE model with abdominal obesity in terms of submarining behavior prediction, during a frontal crash event. In our previous study, a subject-specific FE model scaled from the 50th percentile Global Human Body Model Consortium (GHBMC) human model to the average physique of three female post mortem human subjects (PMHSs) with abdominal obesity was developed and tested its biofidelity under lap belt loading conditions ([1]). In this study frontal crash sled simulations of the scaled human model have been performed, and the biofidelity of the model has been evaluated. Crash conditions were given from the previous study ([2]), and included five low-speed and three high-speed sled tests with and without anti-submarining device.
Technical Paper

A Study of Hybrid III 5th Percentile Female ATD Chest Accelerometers to Assess Sternum Compression Rate in Chest on Module Driver Out-of-Position Evaluations

2017-03-28
2017-01-1431
Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
Technical Paper

Heart-Rate Monitoring Using Single Camera

2017-03-28
2017-01-1434
Heart rate is one of the most important biological features for health information. Most of the state-of-the-art heart rate monitoring systems rely on contact technologies that require physical contact with the user. In this paper, we discuss a proof-of-concept of a non-contact technology based on a single camera to measure the user’s heart rate in real time. The algorithm estimates the heart rate based on facial color changes. The input is a series of video frames with the automatically detected face of the user. A Gaussian pyramid spatial filter is applied to the inputs to obtain a down-sampled high signal-to-noise ratio images. A temporal Fourier transform is applied to the video to get the signal spectrum. Next, a temporal band-pass filter is applied to the transformed signal in the frequency domain to extract the frequency band of heart beats. We then used the dominant frequency in the Fourier domain to find the heart rate.
Technical Paper

Replicating Real-World Friction of Motorcycle Helmet Impacts and Its Effects on Head Injury Metrics

2017-03-28
2017-01-1433
The purpose of this study was to determine the frictional properties between the exterior surface of a motorcycle helmet and ‘typical’ roadway surfaces. Motorcycle helmet impacts into asphalt and concrete surfaces were compared to abrasive papers currently recommended by government helmet safety standards and widely used by researchers in the field of oblique motorcycle helmet impact testing. A guided freefall test fixture was utilized to obtain nominal impact velocities of 5, 7 and 9 m/s. The impacting surfaces were mounted to an angled anvil to simulate an off-centered oblique collision. Helmeted Hybrid III ATD head accelerations and impact forces were measured for each test. The study was limited to a single helmet model and impact angle (30 degrees). Analysis of the normal and tangential forces imparted to the contact surface indicated that the frictional properties of abrasive papers differ from asphalt and concrete in magnitude, duration and onset.
Technical Paper

An Introduction to the Forensic Acquisition of Passenger Vehicle Infotainment and Telematics Systems Data

2017-03-28
2017-01-1437
The data obtained from event data recorders found in airbag control modules, powertrain control modules and rollover sensors in passenger vehicles has been validated and used to reconstruct crashes for years. Recently, a third-party system has been introduced that allows crash investigators and reconstructionists to access, preserve and analyze data from infotainment and telematics systems found in passenger vehicles. The infotainment and telematics systems in select vehicles retain information and event data from cellular telephones and other devices connected to the vehicle, vehicle events and navigation data in the form of tracklogs. These tracklogs provide a time history of a vehicle’s geolocation that may be useful in investigating an incident involving an automobile or reconstructing a crash. This paper presents an introduction to the type of data that may be retained and the methods for performing data acquisitions.
Technical Paper

An Analysis of EDR Data in Kawasaki Ninja 300 (EX300) Motorcycles

2017-03-28
2017-01-1436
Various electronic control units from Kawasaki Ninja 300 motorcycles were tested in-situ in order to heuristically examine the capabilities and behavior of the event data recorders (EDR). The relevant hexadecimal data was downloaded from the ECU and translated using known and historically proven applications. The hexadecimal translations were then confirmed using data acquisition systems as well as the Kawasaki Diagnostic Software (KDS). Numerous tests were performed to establish the algorithms which cause the EDR to record data. It was determined that the EDR recording “trigger” was caused by the activation of the tip-over sensor, which in turn shuts the engine off. In addition, specific conditions must be met with regards to the rear wheel rotation prior to engine shut-down.
Technical Paper

Behavior of Toyota Airbag Control Modules Exposed to Low and Mid-Severity Collision Pulses

2017-03-28
2017-01-1438
The repeatability and accuracy of front and rear speed changes reported by Toyota’s Airbag Control Modules (ACMs) have been previously characterized for low-severity collisions simulated on a linear sled. The goals of the present study are (i) to determine the accuracy and repeatability of Toyota ACMs in mid-severity crashes, and (ii) to validate the assumption that ACMs function similarly for idealized sled pulses and full-scale vehicle-to-barrier and vehicle-to-vehicle crashes. We exposed three Toyota Corollas to a series of full-scale aligned frontal and rear-end crash tests with speed changes (ΔV) of 4 to 12 km/h. We then characterized the response of another 16 isolated Toyota ACMs from three vehicle models (Corolla, Prius and Camry) and 3 generations (Gen 1, 2 and 3) using idealized sled pulses and replicated vehicle-to-vehicle and vehicle-to-barrier pulses in both frontal and rear-end crashes (ΔV = 9 to 17 km/h).
Technical Paper

A Method for Vehicle Occupant Height Estimation

2017-03-28
2017-01-1440
Vehicle safety systems may use occupant physiological information, e.g., occupant heights and weights to further enhance occupant safety. Determining occupant physiological information in a vehicle, however, is a challenging problem due to variations in pose, lighting conditions and background complexity. In this paper, a novel occupant height estimation approach is presented. Depth information from a depth camera, e.g., Microsoft Kinect is used. In this 3D approach, first, human body and frontal face views (restricted by the Pitch and Roll values in the pose estimation) based on RGB and depth information are detected. Next, the eye location (2D coordinates) is detected from frontal facial views by Haar-cascade detectors. The eye-location co-ordinates are then transferred into vehicle co-ordinates, and seated occupant eye height is estimated according to similar triangles and fields of view of Kinect.
Technical Paper

Model Predictive Control based Automated Driving Lane Change Control Algorithm for Merge Situation on Highway Intersection

2017-03-28
2017-01-1441
This paper describes design and evaluation of a driving mode decision and lane change control algorithm of automated vehicle in merge situations on highway intersection. For the development of a highly automated driving control algorithm in merge situation, driving mode change from lane keeping to lane change is necessary to merge appropriately. In a merge situation, the driving objective is slightly different to general driving situation. Unlike general situation, the lane change should be completed in a limited travel distance in a merge situation. Merge mode decision is determined based on surrounding vehicles states and remained distance of merge lane. In merge mode decision algorithm, merge availability and desired merge position are decided to change lane safely and quickly. Merge availability and desired merge position are based on the safety distance that considers relative velocity and relative position of subject and surrounding vehicles.
X