Criteria

Text:
Display:

Results

Viewing 61 to 90 of 109758
2017-03-28
Technical Paper
2017-01-0415
Xingxing Feng, Peijun Xu, Penglei Fu, Yunqing Zhang
Abstract This work is motivated by the fact that the surface of a terrain may vary with local pavement properties and number of passes of the vehicle, which means the roughness coefficient and waviness of the terrain may vary in specific intervals. However, in traditional random terrain models, the roughness coefficient and waviness of the terrain are assumed as constants. Therefore, this assumption may be not very reasonable. A novel random terrain model is presented where the roughness coefficient and waviness of the terrain are expressed by interval numbers instead of constants. A 5-degree-of-freedom ride dynamic model of the vehicle with uncertain parameters is derived. The power spectral density (PSD) and root mean square value (RMS) of the vehicle ride responses are shown and analyzed. Analysis results indicate that the vehicle responses vary in specific intervals under the random terrain excitation with interval parameters.
2017-03-28
Technical Paper
2017-01-0422
Guohong Zhang, Qianqian Xie, Shuwei Zhu, Yunqing Zhang
Abstract The sewing machine has been widely used in various aspects of life and it is essential to study its kinematic and dynamic characteristics. A dynamic model of flexible multi-link mechanism for sewing machine including joints with clearance is established to analysis its dynamic response in the present work. The configuration of the sewing machine mainly included five subsystems, feeding mechanism, needle bar mechanism, looper mechanism, shearing mechanism and adjusting mechanism. Since the sewing machine mainly consist of linkage mechanisms that are connected by revolute joints and translational joints, the existence of clearances in the joints and the flexibility of crankshafts and linkage are important factors that affect the dynamic performance. Even little clearance can lead to vibration and fatigue phenomena, lack of precision or even make overall behavior as random.
2017-03-28
Technical Paper
2017-01-0423
Lei Yang, Qiang Li, Chuxuan Wang, Yunqing Zhang
Abstract This paper focuses on dynamic analysis and frame optimization of a FSAE racing car frame. Firstly, a Multi-Body Dynamic (MBD) model of the racing car is established using ADAMS/Car. The forces and torques of the mechanical joints between the frame and suspensions are calculated in various extreme working conditions. Secondly, the strength, stiffness and free vibration modes of the frame are analyzed using Finite Element Analysis (FEA). The extracted forces and torques in the first step are used as boundary conditions in FEA. The FEA results suggest that the size of the frame may be not reasonable. Thirdly, the size of the frame is optimized to achieve minimized weight. Meanwhile the strength and stiffness of the frame are constrained. The optimization results reveal that the optimization methodology is powerful in lightweight design of the frame.
2017-03-28
Technical Paper
2017-01-0428
Tianqi Lv, Yan Wang, Xingxing Feng, Yunqing Zhang
Abstract Steering returnability is an important index for evaluating vehicle handling performance. A systematic method is presented in this paper to reduce the high yaw rate residue and the steering response time for a light duty truck in the steering return test. The vehicle multibody model is established in ADAMS, which takes into consideration of the frictional loss torque and hydraulically assisted steering property in the steering mechanism, since the friction, which exists in steering column, spherical joint, steering universal joint, and steering gear, plays an important role in vehicle returnability performance. The accuracy of the vehicle model is validated by road test and the key parameters are determined by executing the sensitivity analysis, which shows the effect of each design parameter upon returnability performance.
2017-03-28
Technical Paper
2017-01-0431
Xianyao Ping, Gangfeng Tan, Benlong Liu, Shengguang Xiong, Yuyang Cao
Abstract The heavy-duty vehicles have large transportation capacity. Gross mass and center of gravity position of the heavy-duty vehicles vary with the cargo mass and the driving condition, which affect driving safety and handling stability. Gross mass and center of gravity position of the vehicles are usually measured on fixed test platform, and the vehicles are stationary or pass the platform slowly in the measurement process. Most dynamic weighing system could not measure the center of gravity position of the vehicles. On-board mass and center of gravity of motor vehicles measurement system mainly based on the tire pressure information could measure gross mass and center of gravity position accurately in the driving process. The measurement errors of the sensors are effectively decreased by filtering collected sensor data. The relationship between the tire pressure and the tire load is built when the vehicle is stationary.
2017-03-28
Technical Paper
2017-01-0430
Bangji Zhang, Kaidong Tian, Wen Hu, Jie Zhang, Nong Zhang
Abstract This paper introduces a vehicle model in CarSim, and replaces a portion of its standard suspension system with an HIS model built in an external software to implement co-simulations. The maneuver we employ to characterize the HIS vehicle is a constant radius method, i.e. observing the vehicle’s steering wheel angle by fixing its cornering radius and gradually increasing its longitudinal speed. The principles of the influence of HIS systems on cornering mainly focus on two factors: lateral load transfer and roll steer effect. The concept of the front lateral load transfer occupancy ratio (FLTOR) is proposed to evaluate the proportions of lateral load transfer at front and rear axles. The relationship between toe and suspension compression is dismissed firstly to demonstrate the effects of lateral load transfer and then introduced to illustrate the effects of roll motion on cornering.
2017-03-28
Technical Paper
2017-01-0433
Yang Xing, Chen Lv, Wang Huaji, Hong Wang, Dongpu Cao
Abstract Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
2017-03-28
Technical Paper
2017-01-0432
Bing Zhu, Zhipeng Liu, Jian Zhao, Weiwen Deng
Abstract Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
2017-03-28
Technical Paper
2017-01-0435
Koundinya Narasimha Kota, Bharath Sivanandham
Abstract Active roll control system offers better solution in improving the vehicle comfort and handling. There are various ways of active roll control system actuation like electrical, hydraulic and electro-hydraulic combination systems etc. For the current work, dual hydraulic actuator based active roll control mechanism is used. In this paper we have used integrated Model-In-Loop (MIL) based simulation approach to validate the active roll control system. Dual linear hydraulic actuators models and control logic for improving the roll dynamics of the vehicle is built using Matlab/Simulink. The desired car characteristics maneuver and road profiles are modeled in IPG Car maker(a Model in Loop based tool). Simulink model is integrated with Car Maker model for validating the performance in extreme cornering maneuvers, such as double steer step, slalom 18m, fishhook.
2017-03-28
Technical Paper
2017-01-0438
Zhenhai Gao, Tianjun Sun, Lei He
Abstract A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance.
2017-03-28
Technical Paper
2017-01-0439
Joydeep Chatterjee, Yuva Kishore Vaddi, Chetan Prakash Jain
Abstract In urban driving conditions, the steering vibration plays a major role for a customer, spending a significant amount of time behind the steering wheel. Considering the urban drive at Indian roads, 1000~1600rpm band becomes primary area of concern. In this paper, study has been conducted to define the target areas as well as its achievement in reference to given driving pattern on a front wheel powered passenger car for steering vibration. During the concept stage of vehicle development, a target characteristic of steering wheel vibration was defined based on the competitor model benchmarking and prior development experience. A correlated CAE model was prepared to evaluate the modification prior to prototype building and verification. Vibration level in all 3 degrees of freedom at the steering wheel location was measured in the initial vehicle prototypes and target areas of improvement are identified.
2017-03-28
Technical Paper
2017-01-0440
Jun Lu, Zhenfei Zhan, Haozhan Song, Xu Liu, Xin Yang, Junqi Yang
Abstract Noise-vibration-harshness (NVH) design optimization problems have become major concerns in the vehicle product development process. The Body-in-White (BIW) plays an important role in determining the dynamic characteristics of vehicle system during the concept design phase. Finite Element (FE) models are commonly used for vehicle design. However, even though the speed of computers has been increased a lot, the simulation of FE models is still too time-consuming due to the increase in model complexity. For complex systems, like vehicle body structures, the numerous design variables and constraints make the FE simulations based optimization design inefficient. This calls for the development of a systematic and efficient approach that can effectively perform optimization to further improve the NVH performance, while satisfying the stringent design constraints.
2017-03-28
Technical Paper
2017-01-0442
Harchetan Singh Aneja, Manas Tripathi, Harmeet Singh, Aashish Parmar
Abstract With the increasing expectation of customer for a quiet and comfortable ride, automobile manufacturers need to continuously work upon to improve automobile powertrain NVH. Today’s customer has become so aware of vehicle related noises that in-tank fuel pump noise is no exception to the checklist of evaluating cabin NVH. In-tank fuel pump, that is responsible for delivering the fuel from fuel storage tank to delivery rail, uses an electric driven motor. The rotating parts such as rotor, etc. produce vibrations that may traverse to tank body & subsequently vehicle body. Since noise is essentially an audible vibration at its root, these structure borne vibrations may be perceived as noise inside passenger cabin. Additionally, the noise may also be produced by fuel flow pulsations if transferred through piping to vehicle body. This paper focuses on various approaches to reduce the fuel pump generated noise heard inside passenger cabin.
2017-03-28
Technical Paper
2017-01-0416
Vishal Barde, Baskar Anthonysamy, Ganeshan Reddy, Senthil S, Visweswara lenka, Gurdeep Singh Pahwa
Abstract New trend in steering system such as EPS is coming up, but still hydraulic power steering system is more prevalent in today’s vehicles. Power steering pump is a vital component of hydraulic power steering system. Failure of steering pump can lead to loss of power assistance. Prediction of hub load on pump shaft is an important design input for pump manufacturer. Higher hub loads than the actual designed load of pump bearing may lead to seizure of pump. Pump manufacturer has safe limits for hub load. Simulations can assist for optimization of belt layout and placement of accessories to reduce the hub load. Lower hub load can have direct effect on improvement of pump durability. This paper deals with dynamic simulation of belt drive system in MSC.ADAMS as well as vehicle level measurement of hub load on power steering pump.
2017-03-28
Technical Paper
2017-01-0893
Marek Tatur, Kiran Govindswamy, Dean Tomazic
Abstract Demanding CO2 and fuel economy regulations are continuing to pressure the automotive industry into considering innovative powertrain and vehicle-level solutions. Powertrain engineers continue to minimize engine internal friction and transmission parasitic losses with the aim of reducing overall vehicle fuel consumption. Strip friction methods are used to determine and isolate components in engines and transmissions with the highest contribution to friction losses. However, there is relatively little focus on friction optimization of Front-End-Accessory-Drive (FEAD) components such as alternators and Air Conditioning (AC) compressors. This paper expands on the work performed by other researchers’ specifically targeting in-depth understanding of system design and operating strategy.
2017-03-28
Technical Paper
2017-01-0906
Thomas L. Darlington, Gary A. Herwick, Dennis Kahlbaum, Dean Drake
Abstract The Environmental Protection Agency, National Highway Traffic Safety Administration, and California Air Resources Board released the joint mid-term Technical Assessment Review of the light-duty GHG standards in July of 2016. The review generally asserted that the GHG standards adopted in calendar year 2012 for 2022-2025 model year vehicles were feasible. Although many different technologies were evaluated, the review did not assess the benefits of high compression ratio engines enabled by a high-octane low carbon fuel. This study fills in the gap in the Technical Assessment Review by examining the impacts of a 98-research octane number gasoline-ethanol blend with 25 percent ethanol. We find that this fuel would enable higher compression ratios to improve tailpipe greenhouse gas emissions by about 6 percent on most engines.
2017-03-28
Technical Paper
2017-01-0898
Jongwon Lee, Sedoo Oh, Kyung Sub Joo, Seyoung Yi, Kyoung-Pyo Ha, Seongbaek Joo
Abstract The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
2017-03-28
Technical Paper
2017-01-0908
Fanxu Meng, Asanga Wijesinghe, John Colvin, Carolyn LaFleur, Richard Haut
Abstract Natural gas (NG), which consists of mostly methane, can be co-combusted with diesel fuel in existing compression ignition engines through dual fuel technology with reasonable engine modifications. The removal of short-chain alkanes (e.g. CH4, C2H6 and C3H8) of a dual fuel (natural gas and diesel) engine raises a distinctive topic to the exhaust aftertreatment system (ATS). However, there are few studies reported based on tests with real engine exhaust. This present study focuses on the conversion of short-chain alkanes by Co, Ni and Cu/ZSM-5 catalysts, which are commonly used for oxidation/partial oxidation and reforming. These catalysts are tested with exhaust of a dual-fuel (natural gas and diesel) engine. The complicated and dynamic exhaust composition, determined by the engine loading and natural gas substitution, can result in different components in the exhaust and various conversions for species.
2017-03-28
Technical Paper
2017-01-0912
Joel Op de Beeck, Scott Mccleary, Joshua Butler, Issam Djemili, Mihai Baja
Abstract Automotive SCR systems for diesel NOx reduction are dimensioned to reduce NOx efficiently in all driving conditions. In this regard the DEF storage and delivery system is developed to operate in a full range of temperatures, voltages, pressures, etc. To allow a control for optimal performance, sensors are added in the system (temperature, level, pressure sensor). Recently, a DEF quality sensor has been added to assure the correct concentration of urea in water in the onboard DEF tank. Now the question is raised how to assure that the DEF quality sensor is operating correctly and is giving an accurate indication of the liquid in the tank. The objective of this study is to define an independent method (PQD) to verify liquid quality, and challenge the signal generated by the DEF quality sensor. This study describes a possible method and the progress on its validation in various automotive driving conditions.
2017-03-28
Technical Paper
2017-01-0924
Jan Schoenhaber, Nikolas Kuehn, Bastian Bradler, Joerg Michael Richter, Sascha Bauer, Bernd Lenzen, Christian Beidl
Abstract Recently, the European Union has adopted a new regulation on Real-Driving-Emissions (RDE) and also China is considering RDE implementation into new China 6 legislation. The new RDE regulation is focused on measuring nitrogen oxides (NOx) and particulate number (PN) emissions of both light-duty gasoline and diesel vehicles under real world conditions. A supplemental RDE test procedure was developed for European type approval, which includes on-road testing with cars equipped with portable emission measurement systems (PEMS). This new regulation will significantly affect the engine calibrations and the exhaust gas aftertreatment. In this study the impact of the new RDE regulation on two recent EU 6b certified turbocharged direct injected gasoline vehicles has been investigated. A comparison of several chassis dyno drive cycles with two new defined on-road RDE cycles was performed.
2017-03-28
Technical Paper
2017-01-0928
Osama M. Ibrahim
Abstract Diesel oxidation catalysts with ultra-low NO2 emissions have been developed based on palladium-tungsten (Pd-W). The catalysts are supported by aluminum-yttrium oxides (Al2O3-Y2O3) nano-washcoat on sintered metal fibers. Elemental composition analysis was performed using Energy Dispersive Spectroscopy (EDS) to quantify the distribution of the Al2O3-Y2O3 nano-washcoats and Pd-W catalysts on the surface of the metal fibers. Initially, emissions measurements were conducted to evaluate the performance of Pd-W catalysts using small coated samples of sintered metal fibers. The results show that the catalysts selectively oxidize CO into CO2 and reduce NO2 into NO, resulting in over 90% reduction in CO emissions and up to 85% reduction in NO2 emissions. Scale-up of an Active Diesel Particulate Filter (ADPF) was then tested on a Cummins 5.9L ISB diesel engine using the US-FTP transient test cycle and the ISO 8178 8-mode test cycle.
2017-03-28
Technical Paper
2017-01-0957
Ian Smith, Thomas Briggs, Christopher Sharp, Cynthia Webb
Abstract It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
2017-03-28
Technical Paper
2017-01-0988
Michael Cunningham, Mi-Young Kim, Venkata Lakkireddy, William Partridge
Abstract Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
2017-03-28
Technical Paper
2017-01-0992
Dereck Dasrath, Richard Frazee, Jeffrey Hwang, William Northrop
Abstract Partially premixed low temperature combustion (LTC) in diesel engines is a strategy for reducing soot and NOX formation, though it is accompanied by higher unburned hydrocarbon (UHC) emissions compared to conventional mixing-controlled diesel combustion. In this work, two independent methods of quantifying light UHC species from a diesel engine operating in early LTC (ELTC) modes were compared: Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). A sampling system was designed to capture and transfer exhaust samples for off-line GC-MS analysis, while the FT-IR sampled and quantified engine exhaust in real time. Three different ELTC modes with varying levels of exhaust gas recirculation (EGR) were implemented on a modern light-duty diesel engine. GC-MS and FT-IR concentrations were within 10 % for C2H2, C2H4, C2H6, and C2H4O. While C3H8 was identified and quantified by the FT-IR, it was not detected by the GCMS.
2017-03-28
Technical Paper
2017-01-0997
Roberto Aliandro Varella, Gonçalo Duarte, Patricia Baptista, Luis Sousa, Pablo Mendoza Villafuerte
Abstract The gap between regulated emissions from vehicle certification procedures and real-world driving has become increasingly wider, particularly for nitrogen oxides (NOx). Even though stricter emission regulations have been implemented, NOx emissions are dependent on specific, short-duration driving events which are difficult to control, therefore high concentrations of these pollutants are still being measured in European cities. Under certification procedures, vehicle emissions compliance is evaluated through standards, recurring to driving cycles performed on chassis dynamometer under controlled laboratory conditions. Different countries use different standard cycles, with the US basing their certification cycle on FTP-75 and Europe using NEDC (Euro 5/6c)/WLTP (Euro 6d).
2017-03-28
Technical Paper
2017-01-1080
Yanan Wei, Shuai Yang, Xiuyong Shi, Jiaqi Li, Xuewen Lu
Abstract This paper aimed at a gasoline engine "cylinder head- cylinder gasket-cylinder body-bolt" sealing system, built the 3D solid model and the finite element model of the assembly, and calculated the stress and strain of the cylinder gasket under the cylinder pressure and the deformation of the engine block. In addition, based on the calculation results, this paper put forward the optimization scheme of the cylinder gasket structure, re-established the simulation model, and get the calculation results. The calculation results showed that the cylinder pressure had influence on the sealing performance of the cylinder gasket, and the influence of cylinder pressure should be taken into consideration when designing the cylinder gasket. When the cylinder pressure was applied, the overall contact stress of the cylinder gasket had decreased, and the whole remaining height of the gasket had increased.
2017-03-28
Technical Paper
2017-01-1078
Walid Ashraf, Sherif Khedr, Aya Diab, Hashim Elzaabalawy
Abstract A throttle valve is one of the main components of the intake system of a vehicle and is used to control the air flow rate into the combustion chamber at different engine speeds. Consequently, it has considerable effect on the engine power and performance especially at high engine speeds. The butterfly throttle valve is more common in commercial vehicles due to its simplicity. However, the butterfly throttle plate may affect the engine performance by incurring some pumping losses at high engine speeds even with the plate at wide open throttle (WOT) position. Hence it is proposed in this research work to replace and compare the performance of a spark ignition engine butterfly throttle valve to a newly designed barrel-shaped one with regards to the induced air mass flow rate. The main benefit of the proposed barrel-shaped throttle valve is the elimination of the flow restriction at WOT and high engine speeds.
2017-03-28
Technical Paper
2017-01-0445
Muthukumar Arunachalam, Arunkumar S, PraveenKumar Sampath, Abdul Haiyum, Yash Khakhar
In recent years, there is increasing demand for every CAE engineer on their confidence level of the virtual simulation results due to the upfront robust design requirement during early stage of an automotive product development. Apart from vehicle feel factor NVH characteristics, there are certain vibration target requirements at system or component level which need to be addressed during design stage itself in order to achieve the desired functioning during vehicle operating conditions. Vehicle passive safety system is one of which primarily consists of acceleration sensors, control module and air-bag deployment system. As the sensors act as the front-end of passive safety system and control module’s decision is based on these sensors signals, its mounting locations should meet the sufficient inertance or dynamic stiffness performance in order to avoid distortion in signals due to its structural resonances.
2017-03-28
Technical Paper
2017-01-0446
Xiao Chuan Xu, Xiuyong Shi, Jimin Ni, Jiaqi Li, Xiaochuan Xu Sr.
Abstract Oil pump is a critical part of engine lubrication system. The performance and efficiency of oil pump are greatly affected by vibration and noise, which would lead to the pump service life decreasing and pump body easily wearing. Hence the vibration and noise of oil pump is of great importance to study. In this paper, a FEA model of the variable displacement oil pump(VDOP) was established to carry on the modal and noise analysis, while the geometric structure was optimized with test verification. The modal analysis of VDOP was carried out by ABAQUS software, the 3-D unsteady flow field in VDOP was simulated by Pumplinx software, and the sound field was analyzed by ACTRAN acoustic module. Using a special oil pump test bench combined with B&K PULSE vibration and noise test equipment, the NVH and comprehensive performance experiment of the VDOP were carried out here.
2017-03-28
Technical Paper
2017-01-0448
Prakash T. Thawani, Stephen Sinadinos, John Zvonek
Abstract With the advent of EVs/HEVs and implementation of Idle-Stop-Start (ISS) technologies on internal combustion engine (ICE) driven cars/trucks to improve fuel economy and reduce pollution, refrigerant sub-system (RSS) induced noise phenomena like, hissing, gurgling and tones become readily audible and can result in customer complaints and concerns. One of the key components that induce these noise phenomena is the Thermostatic Expansion Valve (TXV). The TXV throttles compressed liquid refrigerant through the evaporator that results in air-conditioning (A/C) or thermal system comfort for occupants and dehumidification for safety, when needed. Under certain operating conditions, the flow of gas and/or liquid/gas refrigerant at high pressure and velocity excites audible acoustical and structural modes inherent in the tubing/evaporator/HVAC case. These modes may often get masked and sometimes enhanced by the engine harmonics and blower noise.
Viewing 61 to 90 of 109758