Refine Your Search

Search Results

Technical Paper

Additive Effects on Atomization and Evaporation of Diesel Fuel Under Engine Conditions

1997-02-24
970795
The objective of this work was to establish whether two detergent-type additives(A and B) influence the drop size and evaporation of two Diesel fuels (1 and 2) under Diesel engine conditions. Two experiments were performed: visualization of liquid and vapor fuel by the exciplex technique in a motored single-cylinder engine and measurement of the Sauter mean diameter, total drop cross sectional area and total drop volume by laser diffraction in a spray chamber. The same Diesel injector and pump system were used in the two experiments. The engine tests were carried out using a high aromatic content fuel (1) particularly suited for the exciplex studies. These studies showed that additive A yielded a lower vapor signal than additive B, which in turn gave a lower vapor signal than untreated fuel. Spray chamber results were obtained for both fuel 1 and 2. Additive A reduced the evaporation of fuel 1 whereas additive B gave a smaller and less consistent affect.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

Tumble and Swirl Quantification within a Motored Four-Valve SI Engine Cylinder Based on 3-D LDV Measurements

1997-02-24
970792
The flow field contained within ten planes inside a cylinder of a 3.5 liter, 24-valve, V-6 engine was mapped using a three-dimensional Laser Doppler Velocimetry (3-D LDV) system. A total of 1,548 LDV measurement locations were used to construct the time history of the in-cylinder flow fields during the intake and compression strokes. The measurements began during the intake stroke at a crank angle of 60° ATDC and continued until approximately 280° ATDC. The ensemble averaged LDV measurements allowed for a quantitative analysis of the dynamic in-cylinder flow process in terms of tumble and swirl motions. Both of these quantities were calculated at every 1.8 crank degrees during the described measurement interval. Tumble calculations were performed about axes in multiple planes in both the Cartesian directions perpendicular to the plane of the piston top. Swirl calculations were also accomplished in multiple planes that lie parallel to the plane of the piston top.
Technical Paper

Effect of Fuel Injection Processes on the Structure of Diesel Sprays

1997-02-24
970799
A diesel spray model has been developed and validated against experimental data obtained for different injection and surrounding gas conditions to allow investigation of the relative importance of the different physical processes occurring during the spray development. The model is based on the Eulerian-Lagrangian approximation and the Navier-Stokes equations, simulating the gas motion, are numerically solved on a collocated non-uniform curvilinear non-orthogonal grid, while the spray equation is solved numerically using a Lagrangian particle tracking method. The injection conditions are determined by another recently developed model calculating the flow in the fuel injection system, the sac volume and injection holes area which accounts for the details of the injection velocity, the fuel injection rate per injection hole and occurrence of hole cavitation. Thus, differences between the sprays from inclined multihole injectors can be simulated and analysed.
Technical Paper

Effect of Solid Body Rotating Swirl on Spray Tip Penetration

1997-02-24
970798
Spray tip penetration and dispersion in high pressure diesel engines have been simulated experimentally with a special emphasis on the effect of swirl. A constant volume chamber was designed to be rotatable in order to generate a continuous swirl and to have the flow field closely resembling a solid body rotation. Emulsified fuel was injected into the chamber and the developing process of fuel sprays was visualized. The effect of swirl on the spray tip penetration was quantified through modeling. Results show that the spray tip penetration is qualitatively different between low and high pressure injections. For high pressure injection, good agreement is achieved between the experimental results and the modeling accounting the effect of swirl on spray penetration. For low pressure injection, reasonable agreement is obtained. The modeling result can be used as basic design data in diesel injector development.
Technical Paper

Characterization of Local Fuel Concentrations and Internal Dynamics in D.I. Diesel Sprays

1997-02-24
970797
The object of this paper is to present a methodology to characterize the distribution of fuel concentration into Diesel sprays and to use it to analyze the internal dynamics and atomization/coalescence mechanisms. This methodology is based on a combination of data obtained with PDA and high speed shadowgraphy on the basis of the light extinction principle. The results of fuel concentration distribution obtained at different instants of the injection show a two zones structure. From the nozzle to approximately 70% of the tip position, the evolution of radial fuel concentration distribution is similar to a gaseous steady jet. The unsteady nature of the Diesel spray appears on the front region where an accumulation of droplets occurs, mainly in the spray axis.
Technical Paper

Quantitative Analysis of Fuel Vapor Concentration in Diesel Spray by Exciplex Fluorescence Method

1997-02-24
970796
An unsteady single spray of n-tridecane which was mixed with a small quantity of exciplex - forming dopants, that is naphthalene and TMPD, was impinged on a flat wall surface with high temperature of 550 K at a normal angle. These experiments were carried out in a quiescent N2 atmosphere with high temperature of 700 K and high pressure of 2.5 MPa. It was possible to generate the fluorescence emissions from the vapor and liquid phases in this spray, when a laser light sheet from a Nd:YAG laser was passing through the cross section of the spray containing its central axis. Then, clear 2 - D images of vapor and liquid phases in the spray were acquired simultaneously by this method. And, the vapor concentration was analyzed quantitatively by applying Lambert - Beer's law to the measured TMPD monomer fluorescence intensity from vapor phase, and by correcting the intensity for the effect of the quenching process due to the ambient temperature and fuel concentration.
Technical Paper

Fabrication of Reinforced Aluminum Brake Calipers Via Pressureless Metal Infiltration of Multi-Piece Preforms

1997-02-24
970786
High reinforcement content metal matrix composites are produced by the infiltration of molten Al alloys into preforms of ceramic particles using the PRIMEX™ pressureless metal infiltration process. These composites possess low density, very high specific stiffness, high fatigue strength, and good corrosion resistance, making them excellent candidates for automotive brake caliper applications. Most current production brake calipers are fabricated from ductile iron. Ductile iron provides good stiffness and fatigue strength, requirements for the application, but also possesses high density and poor corrosion resistance. The introduction of preform infiltrated metal matrix composites into brake caliper applications, however, has been slow due to the complex geometry. Low cost, high volume preform fabrication techniques suited to the production of full fist caliper preforms that can be subsequently infiltrated with molten Al alloy do not currently exist.
Technical Paper

Prediction of Performance of Metal Matrix Composite Brake Rotors Using a Semi-Empirical Model

1997-02-24
970785
A semi-empirical model predicting the final rotor surface temperature under thermal steady state as a function material properties (thermal conductivity, specific heat, density), rotor thickness and test parameters (inertial load, cooling air speed) was constructed. The key observation that led to the construction of this model was that the initial rotor surface temperature during a stop varied linearly with the net temperature rise of the rotor surface during that stop of a fade sequence. The final rotor temperature under thermal steady state, Tfss (also referred to as maximum steady state temperature or MSST), is given by: Excellent agreement between the predicted and observed values Tfss of was found. This model was used to predict performance changes as a result of material modifications and can serve as an excellent tool for rotor material optimization.
Technical Paper

Crash Analysis Response of a Midsize Car Subjected to Side Impact

1997-02-24
970783
Crashworthiness is a measure of a vehicle's structural integrity during mechanical impact and of its ability to absorb energy and provide occupant protection in crash situations. Finite element modeling has been successfully used to simulate collision events; the present work uses these techniques to simulate the side impact of a mid-size car in order to investigate the crash characteristics of a 45 km/hr impact. Five different analyses were conducted on orthogonal and oblique impacts under varying conditions. The numerical results from the first analysis were compared with published experimental crash results, showing favorable comparisons for this numerical model prediction.
Technical Paper

Material Properties of Fe-Cr-Al Alloy Foil for Metal Support

1997-02-24
970790
Recently, a metal support catalyst has been successfully developed and its use has been gradually increasing because of its advantages over the conventional ceramic support. The material properties required of an automotive catalytic converter are expected to increase in severity with intensifying environmental regulations on a worldwide level. This study examined the material properties required of an Fe-Cr-Al alloy foil for a metal support having increased heat resistance. First, the effect of rare earth metals against high temperature oxidation resistance of the Fe-Cr-Al alloy foil is examined and the developed alloy is proposed. Second, the durability of the metal support is discussed. Third, the accelerated creep elongation caused by the growth of an oxide film when catalyst related material is loaded, is described and the influence on the performance of the metal support is discussed.
Technical Paper

Tribological Characteristics and Wear Mechanisms of Hypereutectic Alloys

1997-02-24
970789
The A 390 (18% silicon, 1% copper Aluminum alloy) and a new designed friction material which could have a potential use in brake application have been studied on a pad-on-disk tribometer, where the pad was made of the friction material and the disk out of the hypereutectic alloy. An experimental study has allowed to optimize the formulation of the pad and the heat treatment of the disk material in order to get the best wear-properties (low wear, stable friction coefficient). Analysis have been used to understand the wear mechanisms, i.e. microstructural evolution and degradation of the material.
Technical Paper

The Development of a Method for Determining Effective Slack in Motor Vehicle Restraint Systems for Rollover Protection

1997-02-24
970781
Effective slack associated with seat belt systems for rollover protection is studied for the purpose of improving or anticipating improvements to a motor vehicle rollover protection system. A test method and test devices were constructed to study and develop objective understandings of the effects of motor vehicle seat and seat belt characteristics on effective slack. The test devices and test method were proved in two separate motor vehicles with differing seat belt systems. Results demonstrated that effective slack as a conceptual equivalent to a seat belt webbing length could be repeatable and objectively determined for the systems tested. Determining a seat belt system's effective slack is useful for the purpose of comparing experimental restraints and experimental restraint testing to motor vehicle restraint design and performance.
Technical Paper

Development of Disk Brake Rotor Utilizing Aluminum Metal Matrix Composite

1997-02-24
970787
Disk brake rotors require reduced unsprung weight and improved cooling ability for improved fade performance. Automotive brake rotors made from aluminum metal matrix composites (MMC) were evaluated by dynamometer and vehicle tests for the required improvement. The friction and wear performance and the thermal response during fade stops were compared with those of commercially produced gray cast iron (GCI) rotors. It was proved that MMC is a very effective material to replace GCI for brake rotor application, as it reduces unsprung weight and decreases maximum operation temperature of the brake system.
Technical Paper

Physical Properties of Graphitic Silicon Carbide Aluminum Metal Matrix Composites

1997-02-24
970788
The addition of nickel-coated graphite to silicon carbide particulate reinforced aluminium alloys imparts unique properties to the new composite GrA-Ni™; the graphite makes it useful in high wear applications where it behaves analogously to flake graphite in grey cast iron. Graphite improves scuffing resistance and significantly increases the critical load at which the transition from mild wear to severe wear occurs. The graphitic silicon carbide MMC has better machinability and can be machined at higher metal removal rates than other existing SiC reinforced composites. Fatigue life was determined to be similar to A356-15% SiC composite.
Technical Paper

SMAC-97 Refinement of the Collision Algorithm

1997-02-24
970947
The Simulation Model of Automobile Collisions (SMAC) computer program, developed in the early 1970's, includes a complex collision algorithm for monitoring, detecting and modeling the collision interactions of motor vehicles. A detailed review of some aspects of the logic, rationale and, in particular, limitations of the original SMAC collision algorithm is presented. This paper presents refinements in the definition of the collision interface, the definition of collision type, the vehicle proximity and collision detection logic, and the form of supplementary impulsive constraints on relative motions. The effects of the modifications of the SMAC algorithm on reconstruction results are presented in the form of direct comparisons of results obtained with the original and modified algorithms.
Technical Paper

CRASH-97 - Refinement of the Trajectory Solution Procedure

1997-02-24
970949
The trajectory solution procedures of the original CRASH program included both the SPIN routine and an exploratory trajectory simulation option to approximate and refine the linear and angular velocities at separation. The resulting separation speeds were then used to determine the impact speeds by means of application of the principle of conservation of linear momentum. This paper presents a detailed review of the logic, rationale and limitations of the trajectory solution procedures of the original CRASH program and discusses a number of refinements including: incorporation of the principle of conservation of angular momentum, approximations of the effects of changes during collision in the positions and orientations of the two vehicles and of the effects of external forces and moments that act on the two-body system during the collision, and adaptations of optimization techniques for error reduction and convergence in iterative solutions.
Technical Paper

Modelling of Car Dynamic Frontal Crush

1997-02-24
970943
This paper examines the dynamic displacement-crushing force and dynamic displacement-absorbed energy behaviour of eight cars in full width barrier, 45% overlap rigid barrier and 30° angled barrier tests at 56, 50 and 56 kph respectively. This study shows the frontal crush behaviour of these cars can be divided into three regions or zones of constant force, these zones being associated with crushing of the front structure as far as the engine, the engine and rear front structure and the occupant compartment. The highest average crushing force is associated with crushing of the engine and rear front structure with lower average crushing forces required for the extreme front of the car and for the occupant compartment. It is hypothesised that the energy absorbed-dynamic displacement behaviour in the full width barrier test represents the energy absorbed-mean displacement for all other crush configurations.
Technical Paper

Passenger Vehicle Braking Performance with a Disabled Vacuum Power Booster

1997-02-24
970946
When the vacuum-powered brake booster in a passenger vehicle becomes disabled, the brake force gain of the system is reduced significantly, and the brake pedal force required to lock the tires increases beyond the ability of some adults. In such cases, the maximum braking deceleration acheived by those individuals will be something less than the upper boundary as defined by available traction. This paper's goal is to review the design of vacuum boosters, the literature concerning human ability to depress a brake pedal, and FMVSS 105 requirements which must be met by vehicle manufacturers, and to present performance data with and without the booster operational for four passenger vehicles. Furthermore, the application of this information to accident investigations involving disabled boosters will be discussed.
Technical Paper

Thermal Balance Between the Engine Oil and the Engine Coolant of Turbo Diesel Engines

1997-02-24
970939
In order to reduce the cost of engine cooling systems in particular the turbo Diesel engines with charge air coolers, we want to understand the relationship between oil sump temperatures and engine coolant temperatures and their impact on one another. Several cars have been tested in the climatic wind tunnel. The following are the cooling specifications: hill climbing with 12% grade with or without a trailer at a 20°C ambient max. speed at 35°C ambient. The main results of these studies were: a great variation of oil sump temperature versus coolant temperature a small variation of coolant temperature versus oil sump temperature a very small variation of heat flux in the oil, in the coolant and the output of engine versus oil sump and coolant temperature.
X