Criteria

Text:
Display:

Results

Viewing 121 to 150 of 110718
2017-10-08
Technical Paper
2017-01-2339
Pi-qiang Tan, Yuan Li
Abstract With increasingly severe atmospheric environmental problems, diesel car emissions have attracted broad attention for its main contribution to air pollutant. Alternative fuels become a hot research point in vehicle for rapidly consuming of fossil oil resources. Biodiesel and GTL (gas to liquid) fuels are two typical alternative fuels for diesel fuel. Low blend ratio (≤10%) biodiesel and GTL fuels can be used in a diesel engine without modifying the engine’s configuration. It is important to investigate the difference of low blend ratio biodiesel and GTL fuels used in the same diesel car and to find the optimum one. Gaseous and particle emissions from a light duty diesel car with B10 (10% biodiesel from cooking oil +90% diesel, v/v) and G10 (10% GTL fuel +90% diesel, v/v) was investigated. It was equipped with high pressure common rail system, cooled EGR and DOC and was tested on a chassis dynamometer under NEDC mode.
2017-10-08
Technical Paper
2017-01-2327
Joonsik Hwang, Choongsik Bae, Chetankumar Patel, Avinash Kumar Agarwal, Tarun Gupta
Abstract Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
2017-10-08
Technical Paper
2017-01-2326
Ang Li, Zhiwei Deng, Lei Zhu, Zhen Huang
Abstract In the present study a novel surrogate model for biodiesel including methyl decanoate (MD) and methyl crotonate (MC) was proposed and validated. In the binary mixture of surrogate fuel, MD was chosen to represent saturated methyl esters, which exhibited great low-temperature reactivity with typical negative temperature-coefficient (NTC) behavior and MC represented unsaturated components in real biodiesel, which was mainly responsible for soot formation and evolution. The proportion of MD and MC was determined by matching the characteristics such as derived cetane number (DCN), molecular weight (MW), atom number, H/C ratio and unsaturated degree. All of the criterions were calculated by the least square principles and the calculated surrogate of biodiesel was comprised of 92% MD and 8% MC in mole fraction. Furthermore, detailed kinetic model of the surrogate fuel was constructed and developed with modifications, which was composed of 2918 species and 9164 reactions.
2017-10-08
Technical Paper
2017-01-2328
Yuanxu Li, Karthik Nithyanandan, Zhi Ning, Chia-Fon Lee, Han Wu
Abstract Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
2017-10-08
Technical Paper
2017-01-2329
Xiao Ma, Yue Ma, Shuaishuai Sun, Shi-Jin Shuai, Zhi Wang, Jian-Xin Wang
Abstract Polyoxymethylene dimethyl ethers (PODEn) are promising alternative fuel candidates for diesel engines because they present advantages in soot reduction. This study uses a PODEn mixture (contains PODE3-6) from mass production to provide oxygen component in blend fuels. The spray combustion of PODEn-diesel bend fuels in a constant volume vessel was studied using high speed imaging, PLII-LEM and OH* chemiluminescence. Fuels of several blend ratios are compared with pure diesel. Flame luminance data show a near linear decrease tendency with the blend ratio increasing. The OH* images reveal that the ignition positions of all the cases have small differences, which indicates that using a low PODEn blend ratio of no more than 30% does not need significant adjustment in engine combustion control strategies. It is found that 30% PODEn blended with diesel (P30) can effectively reduce the total soot by approximately 68% in comparison with pure diesel.
2017-10-08
Technical Paper
2017-01-2331
Amar Deep, Naveen Kumar, Harveer Singh Pali
Abstract The use of alternative fuel has many advantages and the main ones are its renewability, biodegradability with better quality exhaust gas emission, which do not contribute to raise the level of carbon dioxide in the atmosphere. The use of non-edible vegetables oils as an alternative fuels for diesel engine is accelerated by the energy crisis due to depletion of resources and increase in environmental problems. In Asian countries like India, great need of edible oil as a food so cannot use these oils as alternative fuels for diesel engine. However there are many issues related to the use of vegetable oils in diesel engine that is high viscosity, low calorific value, high self-ignition temperature etc. Jatropha curcas has been promoted in India as a sustainable substitute to diesel fuel. This research prepared micro emulsions of ethanol and Jatropha vegetable oil in different ratio and find out the physico-chemical parameters to compare with mineral diesel oil.
2017-10-08
Technical Paper
2017-01-2330
Leonardo Israel Farfan-Cabrera, Ezequiel Gallardo, José Pérez-González
Abstract Flouroelastomers and silicone rubbers are commonly employed in static and dynamic seals for automotive applications. In order to prevent premature failures and leakages caused by swelling and/or changes in their mechanical properties, materials for seals are selected according to their compatibility with the environment and fluids involved in the engine operation. Thus, in particular, the use of new fuels and additives in automotive engines requires the assessment of compatibility with common sealing elastomers to prevent failures. Currently, Jatropha oil is being used as a renewable source of fuel in diesel engines for electricity production, transport or agricultural mechanization in various countries. It is used either as biodiesel or as straight vegetable oil (SVO) since it has good heating power and provide exhaust gas with almost no sulfur or aromatic polycyclic compounds. However, the compatibility of elastomers with this SVO has not been investigated yet.
2017-10-08
Technical Paper
2017-01-2333
Marcos Gutierrez, Andres Castillo, Juan Iniguez, Gorky Reyes
Abstract Aiming for cleaner and more efficient energy from the internal combustion engines makes necessary to ensure the special conditions for exploitation of alternative fuels. The engine vibrations are primarily understood as effects of mechanical failures, but they are also a subject of the fuel combustion effects. These effects depend on the fuel type and its ability to complete the combustion process. The vibrations of a diesel engine were measured and analyzed with a frequency spectrum calculated with fast Fourier transforms. The engine was operated with a fuel blend of 10 % recycled lubricating oil with 90% diesel fuel as well as with neat diesel. It was found that the engine operation with this fuel blend has a lower vibration level in comparison with the use of neat diesel fuel. The goal of this research is to determine the properties of the fuel blend, which provide more stability to the engine by means of vibrations reduction.
2017-10-08
Technical Paper
2017-01-2332
Tamara Ottenwaelder, Stefan Pischinger
Abstract In order to reduce engine out CO2 emissions it is a main subject to find new alternative fuels out of renewable sources. For this paper, several fuels were selected which can be produced out of biomass or with hydrogen which is generated directly via electrolysis with electricity from renewable sources. All fuels are compared to conventional diesel fuel and two diesel surrogates. It is well known that there can be a large effect of fuel properties on mixture formation and combustion, which may result in a completely different engine performance compared to the operation with conventional diesel fuels. Mixture formation and ignition behavior can also largely affect the pollutant formation. The knowledge of the combustion behavior is also important to design new engine geometries or implement new calibrations for an existing engine. The fuel properties of the investigated fuels comprise a large range, for example in case of the derived cetane number, from below 30 up to 100.
2017-10-08
Technical Paper
2017-01-2352
Gongde Liu, Li Wang, Runxiang Zhang, Chao Yang, Tengfei Shao
Abstract Fuel economy, Emission regulation and extended oil drain intervals (ODI) are the three key driving forces for engine oil development. More and more attentions have been focused on long ODI diesel engine oil both from the domestic OEMs and oil suppliers, and the ODI was being periodically improved from a normal mileage of about 1×104 kilometers to 6/8/10×104 km or even 12×104 km just within several years on China market. Lots and lots of factors may affect the oil life including oil properties, engine technologies, after-treatment devices and engine working conditions and so on. While from the oil side, the main factors contribute to the oil drain intervals may be the oil nitration and oxidation, soot contamination, base number deterioration and sludge accumulation and etc. There are two strategies to extend the oil longevity applied currently.
2017-10-08
Technical Paper
2017-01-2357
Mark Devlin, Jeffrey Guevremont, Chip Hewette, Marc Ingram, Grant Pollard, William Wyatt
Abstract Different mechanical components in a vehicle can be made from different steel alloys with various surface treatments or coatings. Lubricant technology is needed to prevent wear and control friction on all of these different surfaces. Phosphorus compounds are the key additives that are used to control wear and they do this by forming tribofilms on surfaces. It has been shown that different operating conditions (pressures and sliding conditions) can influence the formation of tribofilms formed by different anti-wear additives. The effect of surface metallurgy and morphology on tribofilm formation is described in this paper. Our results show that additive technology can form proper tribofilms on various surfaces and the right combination of additives can be found for current and future surfaces.
2017-10-08
Technical Paper
2017-01-2359
Yaodong Hu, Fuyuan Yang, Minggao Ouyang
Abstract Energy saving is becoming one of the most important issues for the next generation of commercial vehicles. The fuel consumption limits for commercial vehicles in China have stepped into the third stage, which is a great challenge for heavy duty commercial vehicles. Hybrid technology provides a promising method to solve this problem, of which the dual motor coaxial series parallel configuration is one of the best options. Compared with parallel configuration, the powertrain can not only operate in pure electric or parallel mode, but also can operate in series mode, which shows better flexibility. In this paper, regulations on test cycle, fuel consumption limits and calculation method of the third stage will be introduced in detail. Then, the quasi-static models of the coaxial series parallel powertrain with/without gearbox under C-WTVC (China worldwide transient vehicle cycle) are built. The control strategies are designed based on engine and motor performance.
2017-10-08
Technical Paper
2017-01-2350
Chalermwut Wongtaewan, Umaporn Wongjareonpanit, Komkrit Sivara, Ken Hashimoto, Yoichiro Nakamura
Abstract In Thailand, most heavy-duty trucks were equipped with diesel engine, while a small portion was equipped with compressed natural gas (CNG) engine. However, in the past few years the number of CNG fuel trucks in Thailand has increased significantly due to the cheaper cost of CNG. In general, the emphasis of heavy-duty diesel engine oil performance is on piston cleanliness and soot handling properties, while thermal and anti-oxidation properties are most critical for CNG engine oil performance. For truck fleet owners who operate both types of trucks, using the inappropriate oil that is not fit-for-purpose can adversely affect engine performance and reduce engine service lifespan under prolonged usage. A novel CNG/diesel engine oil was developed to meet both JASO DH-2 heavy-duty diesel engine oil performance and CNG engine oil performance. The candidate formulation was proved adequately fit for practical use regarding to thermal and anti-oxidation properties.
2017-10-08
Technical Paper
2017-01-2373
Jun Kaniyu, Shogo Sakatani, Eriko Matsumura, Takaaki Kitamura
Abstract Diesel Particulate Filter (DPF) is a very effective aftertreatment device to limit particulate emissions from diesel engines. As the amount of soot collected in the DPF increases, the pressure loss increases. Therefore, DPF regeneration needs to be performed. Injected fuel into the exhaust line upstream of the Diesel Oxidation Catalyst (DOC), hydrocarbons are oxidized on the DOC, which increases the exhaust gas temperature at the DPF inlet. It is also necessary that the injected fuel is completely vaporized before entering the DOC, and uniformly mixed with the exhaust gases in order to make the DOC work efficiency. However, ensuring complete evaporation and an optimum mixture distribution in the exhaust line are challenging. Therefore, it is important that the fuel spray feature is grasped to perform DPF regeneration effectively. The purpose of this study is the constructing a simulation model.
2017-10-08
Technical Paper
2017-01-2379
Qian Feng, Shu Shen, Mengliang Li, Zhijun Li, Kongjian Qin, Diming Lou, Jiguang Wang, Xiyu Fang
Abstract Recent toxicological and epidemiologic studies have shown that diesel emissions have been a significant toxic air contaminant. Catalyzed DPF (CDPF) not only significantly reduces the PM mass emissions (>90%), but also further promotes carrier self-regeneration and oxidize more harmful gaseous pollutants by the catalyst coated on the carrier. However, some ultrafine particles and potentially harmful gaseous pollutants, such as VOCs species, originally emitted in the vapor-phase at high plume temperature, may penetrate through the CDPF filter. Furthermore, the components and content of catalyst coated on the CDPF could influence the physicochemical properties and toxicity intensity of those escaping ultrafine particles and gaseous pollutants. In this work, (1) we investigated the influence of precious metal content as a variable parameter on the physicochemical properties and catalytic activities of the small CDPF samples.
2017-10-08
Technical Paper
2017-01-2376
Nic Van Vuuren, Phil Armitage
Abstract Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of the formation of near-nozzle deposits that have been observed on existing underfloor SCR systems. The current work presents in-situ time lapse imaging of an underfloor mounted AUS-32 exhaust-mounted urea dosing unit. The operating conditions under examination are representative of low-load low speed urban driving interspersed with high temperature exposures typical of periodic DPF regeneration.
2017-10-08
Technical Paper
2017-01-2365
Murugesa Pandian M, Anand Krishnasamy
Abstract Reactivity controlled compression ignition (RCCI) is one of the most promising low temperature combustion (LTC) strategies to achieve higher thermal efficiencies along with ultra low oxides of nitrogen (NOx) and particulate matter emissions. Small single cylinder diesel engines of air-cooled type are finding increasing applications in the agriculture pump-set and small utility power generation owing to their lower cost and fuel economy advantages. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under RCCI combustion mode with a newly designed cylinder head to accommodate a high pressure, fully flexible electronically controlled direct diesel fuel injection system, a low pressure gasoline port fuel injection system and an intake air pre heater.
2017-10-08
Technical Paper
2017-01-2364
Jiaqiang Li, Yunshan Ge, Chao He, Jianwei Tan, Zihang Peng, Zidi Li, Wei Chen, Shijie Wang
Abstract Urea SCR technology is the most promising technique to reduce NOx emissions from heavy duty diesel engines. 32.5wt% aqueous urea solution is widely used as ammonia storage species for the urea SCR process. The thermolysis and hydrolysis of urea produces reducing agent ammonia and reduces NOx emissions to nitrogen and water. However, the application of urea SCR technology has many challenges at low temperature conditions, such as deposits formation in the exhaust pipe, lack deNOx performance at low temperature and freezing below -12°C. For preventing deposits formation, aqueous urea solution is hardly injected into exhaust gas stream at temperature below 200°C. The aqueous urea solution used as reducing agent precursor is the main obstacle for achieving high deNOx performances at low temperature conditions. This paper presents a solid SCR technology for control NOx emissions from heavy duty diesel engines.
2017-10-08
Technical Paper
2017-01-2363
Murugesa Pandian M, Anand Krishnasamy
Abstract Advanced low temperature combustion (LTC) modes are most promising to reduce green house gas emissions owing to fuel economy benefits apart from simultaneously reducing oxides of nitrogen (NOx) and particulate matter (PM) emissions from diesel engines. Various LTC strategies have been proposed so far and each of these LTC strategies have their own advantages and limitations interms of precise ignition control, achievable load range and higher unburned emissions. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under different LTC strategies including Homogenous Charge Compression Ignition (HCCI), Premixed Charge Compression Ignition (PCCI) and Reactivity Controlled Compression Ignition (RCCI).
2017-10-08
Technical Paper
2017-01-2369
Prakash Arunachalam, Martin Tuner, Per Tunestal, Marcus Thern
Abstract Humid air motor (HAM) is an engine operated with humidified inlet charge. System simulations study on HAM showed the waste heat recovery potential over a conventional system. An HAM setup was constructed, to comprehend the potential benefits in real-time, the HAM setup was built around a 13-litre six cylinder Volvo diesel engine. The HAM engine process is explained in detail in this paper. Emission analysis is also performed for all three modes of operation. The experiments were carried out at part load operating point of the engine to understand the effects of humidified charge on combustion, efficiency, and emissions. Experiments were conducted without EGR, with EGR, and with humidified inlet charge. These three modes of operation provided the potential benefits of each system. Exhaust heat was used for partial humidification process. Results show that HAM operation, without compromising on efficiency, reduces NOx and soot significantly over the engine operated without EGR.
2017-10-08
Technical Paper
2017-01-2361
David R. Lancaster
Abstract Virtually all developed countries regulate light-duty vehicle emissions and fuel consumption. Those regulations rely on different procedures and driving cycles in testing to different standards in different countries. As a result, it is often very difficult to compare the standards imposed by different countries. This paper utilizes publicly available data to compare the energy requirements of the chassis dynamometer driving cycles in common use throughout the world. It also examines the relative severity of the currently existing light duty vehicle CO2 standards, some of which are mass-based with a targeted fleet average, and some of which are individual vehicle targets based on footprint.
2017-10-08
Technical Paper
2017-01-2368
Wenji Song, Weiyong Tang, Bob Chen
Abstract The 4JB1 diesel engine originated from Isuzu has large share in the China light duty truck market. However, the tightened NOx emission target enforced by NS-V legislation compared with NS-IV regulatory standard is very challenging for this engine platform which originally adopted the DOC+POC catalyst layout. Furthermore, combustion characterization of this type engine leads to high soluble organic fraction (SOF) content in engine out particulates, which requires the catalysts in the exhaust after-treatment system (ATS) to deliver high SOF conversion efficiency in order to meet the regulation limit for particulate matters (PM). In this paper, an innovative exhaust catalyst layout with DOC+V-SCR is introduced. The front DOC is specially formulated with optimized PGM (Platinum Group Metal) loading which ensures effective SOF oxidation while keeping sulfuric acid and sulfate generation minimal.
2017-10-08
Technical Paper
2017-01-2367
Ganesan Mahadevan, Sendilvelan Subramanian
Abstract Control of harmful emissions during cold start of the engine has become a challenging task over the years due to the ever increasing stringent emission norms. Positioning the catalytic converter closer to the exhaust manifold is an efficient way of achieving rapid light-off temperature. On the other hand, the resulting higher thermal loading under high-load engine operation may substantially cause thermal degradation and accelerate catalyst ageing. The objective of the present work is to reduce the light-off time of the catalyst and at the same time reduce the thermal degradation and ageing of the catalyst to the minimum possible extent by adopting an approach with Dynamic Catalytic Converter System (DCCS). The emission tests were conducted at the cold start of a 4 cylinder spark ignition engine with DCCS at different positions of the catalyst at no load conditions.
2017-10-08
Technical Paper
2017-01-2394
Ning Xu, Di-ming Lou, Ji-yao Liu, Piqiang Tan, Zhiyuan Hu
Abstract The range-extended electric transit bus (REEbus) equipped with the auxiliary power unit (APU) using high efficient diesel engine as power source can reduce the cost of power battery and is an ideal transitional powertrain architecture to the pure electric drive. Based on chassis tests of a 12m long REEbus, fuel consumption and emission characteristics during Charge-Sustaining (CS) stage effected by temperature of the REEbus are researched. The APU of REEbus starts to work around just one point with best efficiency and lower emission when the state of charge (SOC) is too low and stop when the SOC is high, which aims to lower fuel consumption. As a result, even during CS stage, the fuel consumption of REEbus is only 22.84 L/100km. Also almost all emissions decrease dramatically and the NOx emission is only 0.68g/km, but the ultrafine-particle number increases owing to better combustion.
2017-10-08
Technical Paper
2017-01-2393
E. Robert Fanick, Svitlana Kroll
Abstract Semi-volatile organic compounds (SVOC) are a group of compounds in engine exhaust that either form during combustion or are part of the fuel and lubricating oil. Since these compounds occur at very low concentrations in diesel engine exhaust, the methods for sampling, handling, and analyzing these compounds are critical to obtaining good results. An improved dilute exhaust sampling method was used for sampling and analyzing SVOC in engine exhaust, and this method was performed during transient engine operation. A total of 22 different SVOC were measured using a 2012 medium-duty diesel engine. This engine was equipped with a stock diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), and a selective catalytic reduction (SCR) catalyst in series. Exhaust concentrations for SVOC were compared both with and without exhaust aftertreatment. Concentrations for the engine-out SVOC were significantly higher than with the aftertreatment present.
2017-10-08
Technical Paper
2017-01-2398
Bei Liu, Xiaobei Cheng, Jialu Liu, Han Pu, Li Yi
Abstract Partially-premixed low-temperature combustion avoids the soot and NOx generation area on the Ф-T diagram to reduce both engine NOx and soot emissions. Compared with the HCCI combustion mode, partially-premixed combustion (PPC) has better combustion controllability. The purpose of controlling the combustion phase can be achieved by adjusting injection timing and strategy. Based on a 4 cylinder turbocharged diesel engine, this paper aims at investigating the influence of injection strategy to the engine combustion and emission formation under the condition of single injection and split injection PPC strategy respectively, in which the primary purpose focus on the emission characteristics of particles. Results show that the early-injection PPC formed by single injection can reduce the quantity, quality and geometric mean diameter (GMD) of particles obviously.
2017-10-08
Technical Paper
2017-01-2399
Jianyu Duan, Kai Sun, Lei Li
Abstract Particulate matter emissions have become a concern for the development of DISI engines. EGR has been extensively demonstrated as a beneficial technology to migrate knock performance, improve fuel economy and reduce NOX emissions. Recently, the effect of EGR on particulate matter emissions is attracting increased attention. This work investigates the effects of EGR on PN emissions with the variations of engine operating parameters and aims to understand the role of EGR in PN emissions for DISI engines. A 1.8liter turbocharged engine with cooled EGR is used for this study. The engine is operated at steady-state conditions with EGR under various operating parameters including injection timing, excess air ratio, and spark timing to characterize the particle number emissions. The results indicates that there is a high sensitivity of PN emissions to EGR with the variations of those parameters.
2017-10-08
Technical Paper
2017-01-2397
Zhan Gao, Lei Zhu, Xinyao Zou, Chunpeng Liu, Zhen Huang
Abstract Biodiesel is a potential alternative fuel which can meet the growing need for sustainable energy. Partially premixed compression ignition (PPCI) is an important low-temperature combustion strategy to reduce NOx and soot emission of diesel engines. To investigate partial premixing impact on particle formation in flames of biodiesel or biodiesel surrogates, an experimental study was performed to compare the soot morphology and nanostructure evolution in laminar co-flow methyl decanoate non-premixed flame (NPF) and partially premixed flame (PPF). The thermophoretic sampling technique was used to capture particles along flame centerlines. Soot morphology information and volume fraction were obtained from TEM analysis and nanostructure features were evaluated by HR-TEM. With primary equivalence ratio of 19, gas temperature of PPF is higher along flame centerline compared with NPF. The results show an initially stronger sooting tendency in PPF at lower positions.
2017-10-08
Technical Paper
2017-01-2396
Fushui Liu, Yang Hua, Han Wu, Xu He, Ning Kang
Abstract Soot emission, known as PM (particulate matter), is becoming a big issue for GDI engines as the emission regulations being increasingly stricter. It is found that ethanol, as an oxygenated bio-fuel, can reduce the soot emission when added to gasoline. In order to fully understand the effect of ethanol on soot reducing, the soot characteristics of ethanol/gasoline blends were studied on laminar diffusion flames. In this experiment, the blending ratio of ethanol/gasoline was set as E0/20/40/60/80. Considering the carbon content decreasing due to ethanol addition, carbon mass flow rate was remained constant. The two-dimensional distributions of soot volume fraction were measured quantitatively by using two-color laser induced incandescence technique. The results showed that ethanol is able to decrease the soot significantly, but the effect of ethanol on soot reduction is weakened with the increasing ethanol ratio.
2017-10-08
Technical Paper
2017-01-2384
Ijhar H. Rusli, Svetlana Aleksandrova, Humberto Medina, Stephen F. Benjamin
Abstract In aftertreatment system design, flow uniformity is of paramount importance as it affects aftertreatment device conversion efficiency and durability. The major trend of downsizing engines using turbochargers means the effect of the turbine residual swirl on the flow needs to be considered. In this paper, this effect has been investigated experimentally and numerically. A swirling flow rig with a moving-block swirl generator was used to generate swirling flow in a sudden expansion diffuser with a wash-coated diesel oxidation catalyst (DOC) downstream. Hot-wire anemometry (HWA) was used to measure the axial and tangential velocities of the swirling flow upstream of the diffuser expansion and the axial velocity downstream the monolith. With no swirl, the flow in the catalyst monolith is highly non-uniform with maximum velocities near the diffuser axis. At high swirl levels, the flow is also highly nonuniform with the highest velocities near the diffuser wall.
Viewing 121 to 150 of 110718