Criteria

Text:
Display:

Results

Viewing 151 to 180 of 109901
2017-06-05
Journal Article
2017-01-1816
Mahsa Asgarisabet, Andrew Barnard
Carbon Nanotube (CNT) thin film transducers produce sound with the thermoacoustic effect. Alternating current passes through the low heat capacity CNT thin film changing the surface temperature rapidly. CNT thin film does not vibrate, instead it heats and cools the air adjacent to the film, creating sound pressure waves. These transducers are inexpensive, transparent, stretchable, flexible, magnet-free and lightweight. Because of their novelty, developing a model and better understanding the performance of CNT transducers is useful in technology development in applications that require ultra-lightweight sub-systems. The automotive industry is a prime example of where these transducers can be enabling technology for innovative new component design. Developing a multi-physics (Electrical-Thermal-Acoustical) FEA model, for planar CNT transducers is studied in this paper.
2017-06-05
Technical Paper
2017-01-1817
Steven M. Gasworth, Vasudev Nilajkar, Matteo Terragni
Polycarbonate (PC) glazing as a one-for-one glass replacement offers a 50% weight reduction, but exhibits several dB lower sound transmission loss (STL) in the low frequency range where tire and engine noise are dominant. In the high frequency range where wind noise is dominant, PC glazing offers an STL at least comparable to its glass counterpart, and an STL exceeding glass when this frequency range encompasses the glass coincidence frequency. However, a key value proposition of PC glazing is the opportunity for feature integration afforded by the injection molding process generally used for forming such glazing. Two component (2K) molding fuses a second shot of plastic material behind, and along the perimeter of, the transparent PC first shot. This second shot can incorporate features and implement functions that require additional components attached or peripheral to a glass version.
2017-05-18
Journal Article
2017-01-9375
Lukas Moeltner, Lucas Konstantinoff, Verena Schallhart
Abstract The increasingly stringent emission legislation worldwide and the demand for independence from fossil energy carriers represent major challenges for the future development of diesel engines, particularly for maintaining the diesel engine’s positive characteristics, such as its dynamic driving performance and fuel economy, while drastically reducing emissions. This survey investigates alternative fuel blends used in a state-of-the-art EURO 6 diesel engine with different shares of biomass to liquid, hydrotreated vegetable oils and fatty acid methyl ester, which present a possibility to meet these requirements. In particular, the reduction of particulate matter and, as a result, the possibility to reduce nitrogen oxides emissions holds remarkable potential for the application of synthetic fuels in diesel engines. The investigated fuel blends generally demonstrate good applicability when used in the test engine with standard settings.
2017-05-18
Journal Article
2017-01-9678
G Agawane, Varun Jadon, Venkatesham Balide, R Banerjee
Abstract Liquid sloshing noise from an automotive fuel tank is becoming increasingly important during frequent accelerating/decelerating driving conditions. It is becoming more apparent due to significant decrease in other noise sources in a vehicle, particularly in hybrid vehicles. As a step toward understanding the dynamics of liquid sloshing and noise generation mechanism, an experimental study was performed in a partially filled rectangular tank. A systematic study was performed to understand the effects of critical parameters like fill level and acceleration/deceleration magnitude. Response parameters like dynamic pressure, dynamic force, dynamic acceleration and sound pressure levels along with high speed video images were recorded. The proposed experimental setup was able to demonstrate major events leading to sloshing noise generation. These events in the sloshing mechanism have been analysed from the dynamic sensor data and correlated with high speed video images.
2017-05-18
Journal Article
2017-01-9679
Alvaro Baleato Varela, Franz Irlinger
Abstract Lap time simulation has always been a topic of interest in the automotive industry as it summarizes the whole dynamic performance of an automobile in a single value. During the development of road and race cars, to avoid expensive testing and to prove different design solutions, it is useful to simulate the maximum performance of the vehicles. The cars are driven to their limits to exploit their capabilities, where their dynamic behaviour can be highly non-linear. The vehicle models need to replicate these characteristics as precisely as possible. Due to this, the problem of achieving the minimum lap time with a certain car around a race track is a challenging problem to solve. A method to evaluate the minimum lap time is presented, approaching the optimal solution by coupling a driver model, a simulation environment and genetic algorithms to perform the optimization. The algorithm also offers the possibility to add vehicle parameters to be optimized regarding the lap time.
2017-05-18
Journal Article
2017-01-9680
Husain Kanchwala, Pablo Luque Rodriguez, Daniel Alvarez Mantaras, Johan Wideberg, Sagar Bendre
Abstract In recent times, electric vehicles (EV) are gaining a lot of attention as they run clean and are environment friendly. Recent advances in the applications of integrating control systems in automotive vehicles have made it practicable to accomplish improvement in vehicle's longitudinal and lateral dynamics. This paper deals with a brief overview of current state of art vehicle technologies like direct yaw moment control, traction control and side slip control of EV. There are various controller algorithms available in literature with different torque vectoring strategies. As EV can be precisely controlled because of quick in hub wheel motor response times, therefore various torque vectoring strategies can be comfortably used for enhancing vehicle dynamics. Moreover, by using four independent in-wheel motors, several types of motion controls can be performed.
2017-04-19
Technical Paper
2017-01-5000
Alexander Koder, Florian Zacherl, Hans-Peter Rabl, Wolfgang Mayer, Georg Gruber, Thomas Dotzer
Abstract An effective way to reduce greenhouse gas emissions (GHGs) is to use rurally produced straight jatropha oil as a substitute for diesel fuel. However, the different physical and chemical properties of straight vegetable oils (SVOs) require a customized setup of the combustion engine, particularly of the injection timing and quantity. Therefore, this study demonstrates the differences in the injection and combustion processes of jatropha oil compared to diesel fuel, particularly in terms of its compatibility with exhaust gas recirculation (EGR). A 2.2 l common-rail diesel engine with a two-stage turbocharging concept was used for testing. To examine the differences in injection rate shaping of diesel fuel and jatropha oil, the injector was tested with an injection rate analyzer using both the fuels. To investigate the combustion process, the engine was mounted at an engine test bench and equipped with a cylinder pressure indication system.
2017-04-11
Journal Article
2017-01-9626
Rakaan Chabaan, Mohammad Saad Alam
Abstract Electrical Power Assist Steering (EPAS) systems are currently eliminating the traditional hydraulic steering systems in vehicles. EPAS systems are nonlinear Multi Input Multi Output (MIMO) systems with multiple objectives, including fast response to the driver torque command, good driver feel, and attenuation of load disturbance and sensor noises. Optimal control method is employed to design EPAS system controllers for improved performance and robustness. But these controllers have showed acceptable performance for certain operating conditions and undesired steering feel for high steering gain. In this work, the neural networks are used which replace the optimal controllers of EPAS systems. A Euclidean adaptive resonance theory (EART) networks is trained according to the data collected from an H∞ optimal controller. The collected data represent the controller input and output signals. The said data are normalized and clustered into categories in the EART modules.
2017-04-11
Journal Article
2017-01-9627
André Lundkvist, Roger Johnsson, Arne Nykänen, Jakob Stridfelt
Abstract The objective of this study was to investigate if 3D auditory displays could be used to enhance parking assistance systems (PAS). Objective measurements and estimations of workload were used to assess the benefits of different 3D auditory displays. In today’s cars, PAS normally use a visual display together with simple sound signals to inform drivers of obstacles in close proximity. These systems rely heavily on the visual display, as the sound does not provide information about obstacles' location. This may cause the driver to lose focus on the surroundings and reduce situational awareness. Two user studies (during summer and winter) were conducted to compare three different systems. The baseline system corresponded to a system normally found in today’s cars. The other systems were designed with a 3D auditory display, conveying information of where obstacles were located through sound. A visual display was also available.
2017-04-11
Journal Article
2017-01-9625
Souhir Tounsi
Abstract In this paper, we present a design and control methodology of an innovated structure of switching synchronous motor. This control strategy is based on the pulse width modulation technique imposing currents sum of a continuous value and a value having a shape varying in phase opposition with respect to the variation of the inductances. This control technology can greatly reduce vibration of the entire system due to the strong fluctuation of the torque developed by the engine, generally characterizing switching synchronous motors. A systemic design and modelling program is developed. This program is validated following the implementation and the simulation of the control model in the simulation environment Matlab-Simulink. Simulation results are with good scientific level and encourage subsequently the industrialization of the global system.
2017-04-11
Journal Article
2017-01-9177
N. Obuli Karthikeyan, R. Dinesh Kumar, V. Srinivasa Chandra, Vela Murali
Abstract In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
2017-04-11
Journal Article
2017-01-9176
Jitesh Shukla, A Grinspan, Jeyanthi subramanian
Abstract Lifting axles are auxiliary axles that provide increased load carrying capacity in heavy commercial vehicles. Lift axle gives better fuel efficiency as well as it reduces the operational costs by means of increasing the loading carrying capacity. These axles are raised when the vehicle is in unloaded condition, thus increasing the traction on remaining wheels and reducing the tire wear which in turn lower down the maintenance cost of the vehicle. Lifting height and force requires to lift the whole mechanism and are two main considerable factors to design the lifting axle mechanism. Although in India currently, the use of lift mechanism of single tire with continuous axle is more common. But in the case of pusher axle, continuous axle is unable to lift more after certain height because of the draft angle of the propeller shaft, and single tire axle which has less load carrying capacity up to 6T (Tons).
2017-04-11
Journal Article
2017-01-9175
Yitao Zhu, Makarand Datar, Kalyan Addepalli, Natalie Remisoski
Nowadays, the vehicle design is highly ruled by the increasing customer demands and expectations. In addition to ride comfort and vehicle handling, the Noise, Vibration and Harshness (NVH) behavior of the powertrain is also a critical factor that has a big impact on the customer experience. To evaluate the powertrain NVH characteristics, the NVH error states should be studied. A typical NVH event could be decoupled into 3 parts: source, path, and receiver. Take-off shudder, which evaluates the NVH severity level during vehicle take-off, is one of the most important NVH error states. The main sources of Front Wheel Drive (FWD) take-off shudder are the plunging Constant Velocity Joints (CVJ) on the left and right half shafts. This is because a plunging CVJ generates a third order plunging force with half shaft Revolution Per Minute (RPM), which is along the slip of the plunging CVJ.
2017-04-11
Journal Article
2017-01-9178
Arash E. Risseh, Hans-Peter Nee, Olof Erlandsson, Klas Brinkfeldt, Arnaud Contet, Fabian Frobenius lng, Gerd Gaiser, Ali Saramat, Thomas Skare, Simon Nee, Jan Dellrud
The European Union’s 2020 target aims to be producing 20 % of its energy from renewable sources by 2020, to achieve a 20 % reduction in greenhouse gas emissions and a 20 % improvement in energy efficiency compared to 1990 levels. To reach these goals, the energy consumption has to decrease which results in reduction of the emissions. The transport sector is the second largest energy consumer in the EU, responsible for 25 % of the emissions of greenhouse gases caused by the low efficiency (<40 %) of combustion engines. Much work has been done to improve that efficiency but there is still a large amount of fuel energy that converts to heat and escapes to the ambient atmosphere through the exhaust system. Taking advantage of thermoelectricity, the heat can be recovered, improving the fuel economy.
2017-04-11
Journal Article
2017-01-9076
Ioannis Karakitsios, Evangelos Karfopoulos, Nikolay Madjarov, Aitor Bustillo, Marc Ponsar, Dionisio Del Pozo, Luca Marengo
Abstract The aim of this paper is to introduce a complete fast dynamic inductive charging infrastructure from the back-office system (EV management system) up to the Electric Vehicle (EV) (inductive power transfer module, positioning mechanism, electric vehicle modifications) and the EV user (User interface). Moreover, in order to assess the impact of the additional demand of inductive charging on the grid operation, an estimation of the 24-hour power profile of dynamic inductive charging is presented considering, apart from the road traffic, the probability of the need for fast charging, as well as the specifications of the proposed solution. In addition, an energy management system is presented enabling the management of the operation of the inductive charging infrastructure, the interaction with the EV users and the provision of demand response services to different stakeholders.
2017-04-11
Journal Article
2017-01-9075
Rami Abousleiman, Osamah Rawashdeh, Romi Boimer
Abstract Growing concerns about the environment, energy dependency, and the unstable fuel prices have increased the sales of electric vehicles. Energy-efficient routing for electric vehicles requires novel algorithmic challenges because traditional routing algorithms are designed for fossil-fueled vehicles. Negative edge costs, battery power and capacity limits, vehicle parameters that are only available at query time, alongside the uncertainty make the task of electric vehicle routing a challenging problem. In this paper, we present a solution to the energy-efficient routing problem for electric vehicles using ant colony optimization. Simulation and real-world test results demonstrate savings in the energy consumption of electric vehicles when driven on the generated routes. Real-world test results revealed more than 9% improvements in the energy consumption of the electric vehicle when driven on the recommended route rather than the routes proposed by Google Maps and MapQuest.
2017-04-11
Journal Article
2017-01-9450
Ali Reza Taherkhani, Carl Gilkeson PhD, Philip Gaskell PhD, Rob Hewson PhD, Vassili Toropov PhD, Amin Rezaienia PhD, Harvey Thompson
Abstract This paper investigates the optimization of the aerodynamic design of a police car, BMW 5-series which is popular police force across the UK. A Bezier curve fitting approach is proposed as a tool to improve the existing design of the warning light cluster in order to reduce drag. A formal optimization technique based on Computational Fluid Dynamics (CFD) and moving least squares (MLS) is used to determine the control points for the approximated curve to cover the light-bar and streamline the shape of the roof. The results clearly show that improving the aerodynamic design of the roofs will offer an important opportunity for reducing the fuel consumption and emissions for police vehicles. The optimized police car has 30% less drag than the non-optimized counter-part.
2017-04-11
Journal Article
2017-01-9451
Marouen Hamdi, Drew Manica, Hung-Jue Sue
Abstract Brightness, transparency, and color impact critically the aesthetics of polymeric surfaces. They can significantly change the perception of common damages such as scratch and mar. Particularly, subtle mar damage is more dependent on surface perceptual properties. In this study, we investigate the impact of these attributes on scratch and mar visibility resistance of commercialized polymeric model systems frequently used in automotive industry. Twenty subjects were involved in a psychophysical test based on pairwise comparison, and results were treated using multidimensional scaling (MDS) analysis. A tied ordinal weighted Euclidian MDS model was used to visualize the relational structures of mar perception space. Results show that scratch visibility resistance tends to decrease with dark, more transparent, and green surfaces. Mar perception was reasonably conceptualized by a two-dimensional MDS space.
2017-04-11
Journal Article
2017-01-9452
Wenfeng Zhu, Chunyu LI, Yao Zhong, Peijian Lin
Abstract Automotive window seal has great influence on NVH (Noise-Vibration-Harshness) performance. The aerodynamic effect on ride comfort has attracted increasing research interest recently. A new method for quantifying and transferring aerodynamics-induced load on window seal re-design is proposed. Firstly, by SST (Shear Stress Transport) turbulence model, external turbulent flow field of full scale automotive is established by solving three-dimensional, steady and uncompressible Navier-Stokes equation. With re-exploited mapping algorithm, the aerodynamics pressure on overall auto-body is retrieved and transferred to local glass area to be external loads for seals, thus taking into account the aerodynamics effect of high speed fluid-structure interaction. This method is successfully applied on automotive front window seal design. The re-design header seal decreases the maximum displacements of leeward and windward glass with 9.3% and 34.21%, respectively.
2017-03-28
Technical Paper
2017-01-0214
Simon O. Omekanda, Rezwanur Rahman, Eric M. Lott, Sadek S. Rahman, Daniel E. Hornback
Designing an efficient transient thermal system model has become a very important task in improving fuel economy. As opposed to steady-state thermal models, part of the difficulty in designing a transient model is optimizing a set of inputs. The first objective in this work is to develop an engine compatible physics-based 1D thermal model for fuel economy and robust control. In order to capture and study the intrinsic thermo-physical nature, both generic “Three Mass” and “Eight Mass” engine model are developed. The models have been correlated heuristically using Simulink and Flowmaster, respectively. In order to extend the lumped mass engine model it also has been extended to Simulink model. In contrast to the complexity of the models the “Heuristic search” of input parameters has been found to be challenging and time consuming.
2017-03-28
Technical Paper
2017-01-1722
HUANG YEN JUNG, Jau-Huai Lu
There is a growing concern for the pollutants emitted by diesel vehicles, especially the World Health Organization (WHO) officially classified diesel engine exhaust as a carcinogen. Countries all over the world have formulated stringent standards to regulate the emissions of new diesel engines. However, diesel engines are very durable that 60% of the diesel vehicles are more than ten years old in Taiwan. In order to reduce the exhaust emission of these in use vehicles, installation of diesel particulate filter (DPF) is currently promoted. As the carbon particulates accumulate inside the filter to a certain amount, the DPF needs to be regenerated to prevent clogging of the filter. It was found the regeneration process may cause “second pollution” and generate hot exhaust that might cause disasters when the regeneration is conducted as the vehicle is parking.
2017-03-28
Technical Paper
2017-01-1736
Piyamabhorn Uttamung, Jenwit Soparat, Apichart Teralapsuwan, Wuttipong Sritham, Chi-na Benyajati
The energy storage is the main issue for an electric bus operating in the metropolis such as Bangkok. In order to provide a service of at least 200 km per charge and provide enough energy for air condition in bad traffic conditions, the batteries must be installed as many as possible on the bus. However due to an increased awareness to cater for disabled and elderly customers, a low-floor bus concept has been introduced in Thailand. As a result, an installation space in a lower area of the chassis was replaced with passenger seats. Therefore, remaining space for battery pack installation could be inside the passenger room and on the roof. However, the passenger room space would likely be reserved for more seat capacity. An installation of the battery packs on the roof was considered in this study. Such design could be considered unconventional especially in Thailand where such space would normally accommodate only the air condition unit.
2017-03-28
Technical Paper
2017-01-1739
Worrapon Tamuang, Sutee Olarnrithinun, Yingyot Aue-u-lan
A forging process is a process used for producing automotive components such as power train components due to advantages of a high production volume and superior part’s strength. During repeated forging sequence, the forming dies are undergone high forming load which is normally closed to or higher than the yield stress of the die materials especially in the local area. That would be a major cause of a local fatigue crack formation and as a result limit life service of the forming dies. This type of the failure is known as a low cycle fatigue. Normally, the life service is less than 104. To improve the capability of the forging processes, the tool life needs to be known. Thus, to achieve reliable estimation of the tool life during the design, the material testing is required.
2017-03-28
Technical Paper
2017-01-1738
Jen Chi Liao, Cheng-Yueh Wang
Diesel engines have significant contribution to the formation of particulate matter (PM) in metropolitan areas. Lot of researches have revealed that PM originated from diesel engine is carcinogenic and is closely related to lung cancers. Diesel engines used in trucks, buses, pickups, and automobiles have been regulated systematically with more and more stringent emission standards in the past thirty years. However, non road diesel engines are under much looser regulation. The reduction of PM for non road diesel engines becomes an important issue recently as most of the on road diesels are conformable to the strict standards. Emissions of diesel engines used in construction machinery were measured in real fields for real operations in this study. The variations of NOx concentrations and opacity were recorded in four different working modes, low idle, high idle, rapid acceleration, and partial load. It was found that opacity varied a lot in rapid acceleration.
2017-03-28
Technical Paper
2017-01-1733
Park Watanawongskorn
A variety of successful research on Palm Methyl Ester or Biodiesel reveals that Biodiesel contributes substantial reduction of Particulate Matters (PM) emitted from Compression Ignition (CI) engines due to the impact of effective oxygen function compared with commercial diesel. To reduce further PM emission, oxygenated fuel such as ethanol could be one of the possible options. This research will focus on the effects of ethanol on PM quantity and morphology by blending it with biodiesel. In the experiment, Ethanol will be blended with biodiesel (B100) with the blend ratio of 10%, 20%, and 30% by volume and then operated with a small CI engine in order to investigate PM development. Operating conditions will be divided into 0%, 20%, 40%, 60%, and 80% load of maximum torque. For each operating load, the engine speeds will be varied into 1600, 1800, 2000, 2200, and 2400 RPM.
2017-03-28
Technical Paper
2017-01-1735
Jenwit Soparat, Piyapong Premvaranon, Chi-na Benyajati, Jiravan mongkoltanatas
The energy storage is the main issue for an electric bus operating in the metropolis such as Bangkok. In order to provide a service of at least 200 km per charge and provide enough energy for air condition in bad traffic conditions, the batteries must be installed as many as possible on the bus. However due to an increased awareness to cater for disabled and elderly customers, a low-floor bus concept has been introduced in Thailand. As a result, an installation space in a lower area of the chassis was replaced with passenger seats. Therefore, remaining space for battery pack installation could be inside the passenger room and on the roof. However, the passenger room space would likely be reserved for more seat capacity. An installation of the battery packs on the roof was considered in this study. Since the energy storage of choice was Lithium-ion batteries, an adequate cooling of battery pack was essential for using in tropical climate during both charge and discharge.
2017-03-28
Technical Paper
2017-01-1729
Alex K. Gibson
In the increasing development of autonomous vehicles, advanced driver assistance systems play a vital role in the safety of the driver, surrounding vehicles, and pedestrians. The scope of this research is to explore the methods of recognition used to detect obstacles that a vehicle encounters. This includes, but is not limited to, road lines, stop signs, pedestrians, other vehicles, speed bumps, etc. Many challenges are presented as the importance of the visual identification becomes more ubiquitous. For example, when conditions are less than ideal, such as heavy rain, snow, or fog, the approach to ground truth recognition becomes much more difficult. This can be achieved by creating a dynamic system that evaluates the change in luminance and/or ground truth and determines the vanishing point of the current ground truth recognized. These methods cannot be achieved without the fundamental techniques of visual processing.
2017-03-28
Technical Paper
2017-01-1740
Benjaporn Nakornpun
AC2A is a gravity cast aluminium alloy which has been widely used particularly in the automotive industry due to its good castability, weldability and pressure tightness. Even though aluminium gravity cast parts has less porosity trouble than those produced using other die casting processes, little porosity is still not allowed for automotive parts with safety requirement such as brake cylinder, fuel rail, oil pump housing, power steering valve box and clutch cylinder. This work aimed to investigate effects of cooling rate and melt treatment on porosity level of gravity casting AC2A aluminium alloy. Aluminium was performed by gravity casting method. Different mold material and degassing agent addition were used to obtain different controlled level of cooling rate and melt quality, respectively. The different mold was effected to cooling rate and porosity.
2017-03-28
Technical Paper
2017-01-1645
Marjorie Myers
Harness and terminal manufacturers are working to support the Automotive industry’s need to reduce energy consumption (and costs) via weight savings initiatives by converting from Cu to Al electrical cables within the traditional open style cable harness termination manufacturing environment. As the Automotive industry is fully aware, terminating nominally same sized Al cable to existing Cu cable designed terminals is neither a functional, nor a reliable, equivalent option – termination design changes are required to be able successfully qualify any such Al cable to Cu terminal connections for Automotive applications. In addition, the harness industry are looking for any new Al ‘open’ crimp termination designs to work well within the existing manufacturing and connector/harness design environment; e.g., ‘open’ crimp termination, on par termination process speed, no post-treatment, etc.
2017-03-28
Technical Paper
2017-01-0262
Taewon Kim, Xi Luo, Mustafa Al-Sadoon, Ming-Chia Lai, Marcis Jansons, Doohyun Kim, Jason Martz, Angela Violi, Eric Gingrich
Abstract Three jet fuel surrogates were compared against their target fuels in a compression ignited optical engine under a range of start-of-injection temperatures and densities. The jet fuel surrogates are representative of petroleum-based Jet-A POSF-4658, natural gas-derived S-8 POSF-4734 and coal-derived Sasol IPK POSF-5642, and were prepared from a palette of n-dodecane, n-decane, decalin, toluene, iso-octane and iso-cetane. Optical chemiluminescence and liquid penetration length measurements as well as cylinder pressure-based combustion analyses were applied to examine fuel behavior during the injection and combustion process. HCHO* emissions obtained from broadband UV imaging were used as a marker for low temperature reactivity, while 309 nm narrow band filtered imaging was applied to identify the occurrence of OH*, autoignition and high temperature reactivity.
Viewing 151 to 180 of 109901