Criteria

Text:
Display:

Results

Viewing 151 to 180 of 109758
2017-03-28
Technical Paper
2017-01-0471
Yasuo Kadoya, Yuki Oshino
Abstract By implementation of the core technology of capacitor-resistance welding, RingMash technology, metallic bonding, is developed to manufacture various components. It is the best suited for powertrain components such as transmission gears at low cost. Components made by RingMash are attributed to smaller and lighter transmission. The technology is recommended to manufacture co-axle male-female work pieces bonding, male side diameter is slightly larger than female side hole. RingMashing is a solid state bonding without melting work pieces. The actual RingMashing process is done in ambient atmosphere and does not use filler. RingMashing process itself takes only 100 milliseconds, results very minimum Heat-Affected Zone (HAZ), normally no more than 1 mm. The minimum HAZ achieves excellent structural integration for better performance of transmission. If two work pieces are same metals, spattering free bonding is possible.
2017-03-28
Technical Paper
2017-01-0479
Soichi Hareyama, Ken-ichi Manabe, Makoto Nakashima, Takayuki Shimodaira, Akio Hoshi
Abstract This investigation describes a method for estimating the absolute lock effect in bolted joint. Observation results of loosening phenomenon in industrial vehicle are analyzed for the linear relation by the proposed regression formula. Based on the relation, in early stages of the development test, the rate of clamping force decrease can be estimated accurately after prolonged operation by measuring the clamping force behavior. The tendency to decrease is observed about the depression type and working load type loosening. For evaluation design bases, the residual clamping force estimation chart is established. The L-N (Loosening Lifetime - Number of Cycles to Loosening N) diagram is proposed for the loosening lifetime prediction for working load type loosening also. Using the loosening damage (cumulative decrease of clamping force) and L-N diagram, the lifetime to loosening failure can be predicted accurately for the locking device and method as an absolute evaluation.
2017-03-28
Technical Paper
2017-01-0508
Gabor Kiss, Yuya Ando, Martin Schifko
Abstract Simulation tools are becoming more and more popular in the automotive industry since they can significantly reduce the costs required for development of new models. Currently there are many computational fluid dynamics (CFD) tools available on the market and becoming indispensable tools for R&D in many of the automotive applications. However there are some applications which require much effort by highly skilled engineers to prepare the model and impractical level of computation time even using a cluster computer using the conventional CFD tools due to the nature of physics and complexity of a geometry such like dip painting process. Therefore, corrosion protection engineers are striving to find an alternative solution. Another issue is that the main focus of those available CFD tools are problems occurring during the dip paint simulations and they omit problems occurring after the object dips out from the bath, such as retained water or bake drips.
2017-03-28
Technical Paper
2017-01-0506
Xueyuan Nie, Jimi Tjong
Abstract Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
2017-03-28
Technical Paper
2017-01-0497
Byoung-Keon Daniel Park, Matthew P. Reed
Abstract Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
2017-03-28
Technical Paper
2017-01-0489
Hyunkwon Jo, Jongsoo Kim, Jaemin Park, Heeseung Yang, Hyunmin Park
Abstract Cost reduction is an important issue in the intense competition automotive industry. Interior parts which are mainly consist of plastic have same issue. The manufacturing main processes of plastic products are injection and assemble and the cost of injection depends on injection cycle time. Therefore many studies for the reduction of injection cycle time have been implemented. However the researches based on engineer's experiences have limits so, nowadays many studies utilize CAE. In this paper, the study for the reduction of cycle time focused on injection molding design. To satisfy appearance quality with the reduction of cycle time, the design of injection molding was optimized by using CAE. The result of CAE showed many causes and effects of problems. The optimization of injection molding design improved the quality with the reduction of cycle time. Finally, the product based on CAE showed good quality and cycle time reduction in comparison with previous products.
2017-03-28
Technical Paper
2017-01-0407
Fei Huo, Huyao Wu
Abstract Biomechanics and biodynamics are increasingly focused on the automotive industry to provide comfortable driving environment, reduce driver fatigue, and improve passenger safety. Man-centered conception is a growing emphasis on the open design of automobile. During the long-term driving, occupational drivers are easily exposed to the neck pain, so it is important to reduce the muscle force load and its fatigue, which are not usually considered quantitatively during traditional ergonomics design, so standards related are not well developed to guide the vehicle design; On the other hand, the head-neck models are always built based on the statics theory, these are not sufficient to predict the instantaneous variation of the muscle force. In this paper, a head-neck model with multi DOFs is created based on multibody dynamics. Firstly, a driver-vehicle-road model considering driver multi-rigid body model, vehicle subsystems, and different ranks of pavement is built.
2017-03-28
Technical Paper
2017-01-0410
Aref M. A. Soliman
Abstract Although active suspension improved vehicle ride comfort, their two main drawbacks are the required high component costs and energy input levels for active suspension. The semi-active and twin accumulator suspensions are proposed which addresses these two drawbacks. Ride performances for passive, twin accumulator and semi-active are examined theoretically using half vehicle model. The power consumed in rolling resistance and power dissipation in suspension for passive, twin accumulator and semi-active suspension systems are evaluated. The effect of road disturbance on the vehicle ride performance for twin accumulator and semi-active suspension systems is studied. The rolling resistance power losses are also investigated. The results showed that the optimum twin accumulator suspension system over all road roughness/speed conditions would have adaptable spring stiffness and damping coefficients which could be changed depending on the road conditions.
2017-03-28
Technical Paper
2017-01-1350
Jon Olson, Mark Fleming, Ram Krishnaswami, Robert Pellillo
Abstract The fuel filler tube check valve (FTCV) is an integral part of a vehicle’s refueling system. The primary function of this valve is to control the refueling characteristics in a manner that enables the vehicle to be refueled efficiently and under wide ranging conditions, while limiting the amount of fuel or fuel vapor emissions being released into the environment. These valves accomplish this function by allowing the flow of gasoline to pass through the valve and into the tank during the refueling process with minimal restriction while limiting the reverse flow as the fuel tank approaches full. The location of these valves varies from vehicle to vehicle but are generally located within the fuel filler or fuel tank system. They have been engineered and developed to ensure the vehicle will meet customer and industry refueling requirements as well as refueling emissions mandates from the Environmental Protection Agency (EPA) and the California Air Resources Board (CARB).
2017-03-28
Technical Paper
2017-01-1428
Berkan Guleyupoglu, Ryan Barnard, F. Scott Gayzik
Abstract Computational modeling of the human body is increasingly used to evaluate countermeasure performance during simulated vehicle crashes. Various injury criteria can be calculated from such models and these can either be correlative (HIC, BrIC, etc.) or based on local deformation and loading (strain-based rib fracture, organ damage, etc.). In this study, we present a method based on local deformation to extract failed rib region data. The GHMBC M50-O model was used in a Frontal-NCAP severity sled simulation. Failed Rib Regions (FRRs) in the M50-O model are handled through element deletion once the element surpasses 1.8% effective strain. The algorithm central to the methodology presented extracts FRR data and requires 4-element connectivity to register a failure. Furthermore, the FRRs are localized to anatomical sections (Lateral, Anterior, and Posterior), rib level (1,2,3 etc.) and element strain data is recorded.
2017-03-28
Technical Paper
2017-01-1187
Tatsuya Sugawara, Takuma Kanazawa, Naoki Imai, Yu Tachibana
Abstract This paper describes the motorized turbo compressor, which is a key technology for reducing the size of the fuel cell system for the Clarity Fuel Cell. The oxygen needed for fuel cell power generation is sent into the fuel cell by compressing the air from the atmosphere by a compressor. The conventionally used Lysholm compressor needed numerous sound absorbers, such as silencers and covers, to help achieve quietness when driving. Therefore, changing to a turbo compressor enhanced quietness and helped to eliminate or reduce the size of these auxiliary sound absorbers. Furthermore, a two-stage supercharging structure was used and the air pressure supplied to the fuel cell was increased to 1.7 times the previous air pressure. This increased the fuel cell power, which enabled to reduce the number of cells needed, and reduced the needed humidification amount which enabled to reduce the size of the humidifier. These enhancements helped to reduce the system size.
2017-03-28
Technical Paper
2017-01-1189
Tsuyoshi Maruo, Masashi Toida, Tomohiro Ogawa, Yuji Ishikawa, Hiroyuki Imanishi, Nada Mitsuhiro, Yoshihiro Ikogi
Abstract Toyota Motor Corporation (TMC) has been developing fuel cell vehicles (FCVs) since 1992. As part of a demonstration program, TMC launched the FCHV-adv in 2008, which established major technical improvements in key performance areas such as efficiency, driving range, durability, and operation in sub-zero conditions. However, to encourage commercialization and widespread adoption of FCVs, further improvements in performance were required. During sub-zero operating conditions, the FC system output power was lower than under normal operating conditions. The FC stack in the FCHV-adv needed to dry the electrolyte membrane to remove unneeded water from the stack. This increased the stack resistance and caused low output power. In December 2014, TMC launched the world’s first commercially available FCV named the Mirai, which greatly improved output power even after start-up in sub-zero conditions.
2017-03-28
Technical Paper
2017-01-1188
Daisuke Hayashi, Atsushi Ida, Shota Magome, Takahisa Suzuki, Satoshi Yamaguchi, Ryosuke Hori
Abstract The key challenge in designing a high power density fuel cell is to reduce oxygen transport loss due to liquid water. However, liquid water transport from catalyst layers to channels under operating conditions is not completely understood. Toyota developed a high resolution space and time liquid water visualization technique using synchrotron x-ray (Spring-8) radiography. In addition, a simulation method was created based on computational fluid dynamics (CFD) to identify the cell performance relationship to water distribution. The relationship among gas diffusion layer (GDL) parameters, water distribution, and fuel cell performance was clarified by combining the techniques Toyota developed.
2017-03-28
Technical Paper
2017-01-1436
Edward Fatzinger, Jon Landerville
Abstract Various electronic control units from Kawasaki Ninja 300 motorcycles were tested in-situ in order to heuristically examine the capabilities and behavior of the event data recorders (EDR). The relevant hexadecimal data was downloaded from the ECU and translated using known and historically proven applications. The hexadecimal translations were then confirmed using data acquisition systems as well as the Kawasaki Diagnostic Software (KDS). Numerous tests were performed to establish the algorithms which cause the EDR to record data. It was determined that the EDR recording “trigger” was caused by the activation of the tip-over sensor, which in turn shuts the engine off. In addition, specific conditions must be met with regards to the rear wheel rotation prior to engine shut-down.
2017-03-28
Technical Paper
2017-01-1441
Heungseok Chae, Kyong Chan Min, Kyongsu Yi
Abstract This paper describes design and evaluation of a driving mode decision and lane change control algorithm of automated vehicle in merge situations on highway intersection. For the development of a highly automated driving control algorithm in merge situation, driving mode change from lane keeping to lane change is necessary to merge appropriately. In a merge situation, the driving objective is slightly different to general driving situation. Unlike general situation, the lane change should be completed in a limited travel distance in a merge situation. Merge mode decision is determined based on surrounding vehicles states and remained distance of merge lane. In merge mode decision algorithm, merge availability and desired merge position are decided to change lane safely and quickly. Merge availability and desired merge position are based on the safety distance that considers relative velocity and relative position of subject and surrounding vehicles.
2017-03-28
Technical Paper
2017-01-1443
Lu ZiLin, Gangfeng Tan, Yuxin Pang, YU TANG, Keyu Qian
Abstract The development of the vehicle quantity and the transportation system accompanies the rise of traffic accidents. Statistics shows that nearly 35-45% traffic accidents are due to drivers’ fatigue. If the driver’s fatigue status could be judged in advance and reminded accurately, the driving safety could be further improved. In this research, the blink frequency and eyes movement information are monitored and the statistical method was used to assess the status of the driving fatigue. The main tasks include locating the edge of the human eyes, obtaining the distance between the upper and lower eyelids for calculating the frequency of the driver's blink. The velocity and position of eyes movement are calculated by detecting the pupils’ movement. The normal eyes movement model is established and the corresponding database is updated constantly by monitoring the driver blink frequency and eyes movement during a certain period of time.
2017-03-28
Technical Paper
2017-01-1457
Jingwen Hu, Nichole Ritchie Orton, Rebekah Gruber, Ryan Hoover, Kevin Tribbett, Jonathan Rupp, Dave Clark, Risa Scherer, Matthew Reed
Abstract Among all the vehicle rollover test procedures, the SAE J2114 dolly rollover test is the most widely used. However, it requires the test vehicle to be seated on a dolly with a 23° initial angle, which makes it difficult to test a vehicle over 5,000 kg without a dolly design change, and repeatability is often a concern. In the current study, we developed and implemented a new dynamic rollover test methodology that can be used for evaluating crashworthiness and occupant protection without requiring an initial vehicle angle. To do that, a custom cart was designed to carry the test vehicle laterally down a track. The cart incorporates two ramps under the testing vehicle’s trailing-side tires. In a test, the cart with the vehicle travels at the desired test speed and is stopped by a track-mounted curb.
2017-03-28
Technical Paper
2017-01-1453
Sudip Sankar Bhattacharjee, Shahuraj Mane, Harsha Kusnoorkar, Sean Hwang, Matt Niesluchowski
Abstract Pedestrian protection assessment methods require multiple head impact tests on a vehicle’s hood and other front end parts. Hood surfaces are often lifted up by using pyrotechnic devices to create more deformation space prior to pedestrian head impact. Assessment methods for vehicles equipped with pyrotechnic devices must also validate that the hood deployment occurs prior to head impact event. Estimation of pedestrian head impact time, thus, becomes a critical requirement for performance validation of deployable hood systems. In absence of standardized physical pedestrian models, Euro NCAP recommends a list of virtual pedestrian models that could be used by vehicle manufacturers, with vehicle FEA (Finite Element Analysis) models, to predict the potential head impact time along the vehicle front end profile. FEA simulated contact time is used as target for performance validation of sensor and pyrotechnic deployable systems.
2017-03-28
Technical Paper
2017-01-1459
HangMook Kim, Jae Kyu Lee, Jin Sang CHUNG
Abstract During a new vehicle development process, there are several requirements for side impact test that should be confirmed. One of the requirements is the prevention of door opening during side impact test. Even though there are many causes for door opening problem, this study deals with inertia effect by impact energy. Until now, there have been two classical methods to prevent car door from opening in side impact. One is the increment of the inertia resistance by increasing the mass of the balance weight and the spring force. The other is the application of the blocking lever. Unfortunately, in spite of our efforts, the door opening problem occurs occasionally. Therefore, to improve the problem fundamentally, this paper proposes a new blocking lever mechanism that work similar to ball-point pen structure. The proposed mechanism fixes the blocking lever when the opening directional inertia force is applied to the door outside handle during side crash.
2017-03-28
Technical Paper
2017-01-1458
Tack Lam, B. Johan Ivarsson
Abstract Disc herniations in the spine are commonly associated with degenerative changes, and the prevalence increases with increasing age. With increasing number of older people on U.S. roads, we can expect an increase in clinical findings of disc herniations in occupants involved in rear impacts. Whether these findings suggest a causal relationship is the subject of this study. We examined the reported occurrence of all spine injuries in the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) database from 1993 to 2014. There were over 4,000 occupants that fit the inclusion criteria. The findings in this study showed that, in the weighted data of 2.9 million occupants, the most common spine injury is an acute muscle strain of the neck, followed by strain of the low back. The delta-V of a rear impact is a reliable indicator of the rate of acute cervical strain in occupants exposed to such impacts.
2017-03-28
Technical Paper
2017-01-1448
Kevin Pline, Derek Board, Nirmal Muralidharan, Srinivasan Sundararajan, Eric Eiswerth, Katie Salciccioli
Abstract Ford Motor Company introduced the automotive industry’s first second row inflatable seatbelt system in 2011. The system is currently available in the outboard seating positions of the second row of several Ford and Lincoln models. An important consideration for this system is the interaction with child restraint systems (CRS) when it is used to install a CRS or used in conjunction with belt position booster. A novel test methodology to assess the interaction of CRS with Ford and Lincoln inflatable seatbelts through frontal impact sled tests is explained. Details of test methods including construction of additional fixtures and hardware are highlighted. This procedure is designed to enable test labs capable of running Federal Motor Vehicle Safety Standard (FMVSS) 213 testing to adapt this test method, with minimal fabrication, by utilizing existing test benches.
2017-03-28
Technical Paper
2017-01-1451
Jan Vychytil, Jan Spicka, Ludek Hyncik, Jaroslav Manas, Petr Pavlata, Radim Striegler, Tomas Moser, Radek Valasek
Abstract In this paper a novel approach in developing a simplified model of a vehicle front-end is presented. Its surface is segmented to form an MBS model with hundreds of rigid bodies connected via translational joints to a base body. Local stiffness of each joint is calibrated using a headform or a legform impactor corresponding to the EuroNCAP mapping. Hence, the distribution of stiffness of the front-end is taken into account. The model of the front-end is embedded in a whole model of a small car in a simulation of a real accident. The VIRTHUMAN model is scaled in height, weight and age to represent precisely the pedestrian involved. Injury risk predicted by simulation is in correlation with data from real accident. Namely, injuries of head, chest and lower extremities are confirmed. Finally, mechanical response of developed vehicle model is compared to an FE model of the same vehicle in a pedestrian impact scenario.
2017-03-28
Technical Paper
2017-01-1460
Nitesh Jadhav, Linda Zhao, Senthilkumar Mahadevan, Bill Sherwood, Krishnakanth Aekbote, Dilip Bhalsod
Abstract The Pelvis-Thorax Side Air Bag (PTSAB) is a typical restraint countermeasure offered for protection of occupants in the vehicle during side impact tests. Currently, the dynamic performance of PTSAB for occupant injury assessment in side impact is limited to full-vehicle evaluation and sled testing, with limited capability in computer aided engineering (CAE). The widely used CAE method for PTSAB is a flat bag with uniform pressure. The flat PTSAB model with uniform pressure has limitations because of its inability to capture airbag deployment during gap closure which results in reduced accuracy while predicting occupant responses. Hence there is a need to develop CAE capability to enhance the accuracy of prediction of occupant responses to meet performance targets in regulatory and public domain side impact tests. This paper describes a new CAE methodology for assessment of PTSAB in side impact.
2017-03-28
Technical Paper
2017-01-0611
Viktor Leek, Kristoffer Ekberg, Lars Eriksson
Today’s need for fuel efficient vehicles, together with increasing engine component complexity, makes optimal control a valuable tool in the process of finding the most fuel efficient control strategies. To efficiently calculate the solution to optimal control problems a gradient based optimization technique is desirable, making continuously differentiable models preferable. Many existing control-oriented Diesel engine models do not fully posses this property, often due to signal saturations or discrete conditions. This paper offers a continuously differentiable, mean value engine model, of a heavy-duty diesel engine equipped with VGT and EGR, suitable for optimal control purposes. The model is developed from an existing, validated, engine model, but adapted to be continuously differentiable and therefore tailored for usage in an optimal control environment. The changes due to the conversion are quantified and presented.
2017-03-28
Technical Paper
2017-01-1107
Christoph Andre Malonga Makosi, Stephan Rinderknecht, Ralf Binz, Frank Uphaus, Frank Kirschbaum
In order to offer a wide range of driving experiences to their customers, original equipment manufacturers implement different driving programs. The driver is capable of manually switching between these programs which alter drivability parameters in the engine control unit. As a result, acceleration forces and gradients are modified, changing the perceived driving experience. Nowadays, drivability is calibrated iteratively through road testing. Hence, the resulting set of parameters is strongly dependent on the individual sentiments of the test engineers. It is shown, that implementing a set of objective criteria offers a way of eliminating personal preferences and sentiment from the drivability calibration process. In combination with the expertise of the testing engineers, the desired vehicle behavior can be transferred into a transient set point sequence to design the acceleration behavior.
2017-03-28
Technical Paper
2017-01-0417
Yingjun Li, Yunkai Gao, Gangan Ma, Qianqian Du, Yabin Wan
Abstract To solve the problem of serious roller wear and improve the smoothness of the sliding door motion process, the rigid-flexible coupling multi-body model of the vehicle sliding door was built in ADAMS. Force boundary conditions of the model were determined to meet the speed requirement of monitoring point and time requirement of door opening-closing process according to the bench test specification. The results of dynamic simulation agreed well with that of test so the practicability and credibility of the model was verified. In the optimization of the ride comfort of the sliding door, two different schemes were proposed. The one was to optimize the position of hinge pivots and the other was to optimize the structural parameters of the middle guide. The impact load of lead roller on middle guide, the curvature of the motion trajectory and angular acceleration of the sliding door centroid were taken as optimization objectives.
2017-03-28
Technical Paper
2017-01-0447
Zhe Li, Mike Dong, Dennis Harrigan, Michael Gardner
In gasoline Powertrain systems, the evaporative emission control (EVAP) system canister purge valve (CPV) can be actuated by pulse-width modulated (PWM) signals. The CPV is an electronically actuated solenoid. The PWM controlled CPV, when actuated, creates pressure pulsations in the system. This pulsation is sent back to the rest of the EVAP system. Given the right conditions, the fill limit vent valve (FLVV) inside the fuel tank can be excited. The FLVV internal components can be excited and produce noise. This noise can be objectionable to the occupants. Additional components within the EVAP system may also be excited in a similar way. This paper presents a bench test method using parts from vehicle’s EVAP system and other key fuel system components.
2017-03-28
Technical Paper
2017-01-1085
Todd Brewer, Cagri Sever, Ruichen Jin, Michael Herr, Xingfu Chen, Reda Adimi
Abstract In a separate SAE paper (Cylinder Head Design Process to Improve High Cycle Fatigue Performance), cylinder head high cycle fatigue (HCF) analysis approach and damage calculation method were developed and presented. In this paper, the HCF damage calculation method is used for risk assessment related to customer drive cycles. Cylinder head HCF damage is generated by repeated stress alternation under different engine operation conditions. The cylinder head high cycle fatigue CAE process can be used as a transfer function to translate engine operating conditions to cylinder head damage/life. There are many inputs, noises, and design parameters that contribute to the cylinder head HCF damage CAE transfer function such as cylinder pressure, component temperature, valve seat press fit, and cylinder head manufacturing method. Material properties and the variation in material properties are also important considerations in the CAE transfer function.
2017-03-28
Technical Paper
2017-01-1076
Mohammad Moetakef, Abdelkrim Zouani, Esra Demren
Abstract In this presentation, two cases of CAE simulations of oil pump-induced tonal noises are presented. The first case involves oil pump-induced whine in an I4engine during coast down. The second case addresses oil pan moan during hot idle and the effect of oil pump pick-up tube positioning inside the oil pan of an I5 engine. The investigations include several design modifications to the pump and the pick-up tube to prevent the tonal noise. Test data are also included to demonstrate the accuracy of the CAE simulation.
2017-03-28
Technical Paper
2017-01-1074
Xingfu Chen, Todd Brewer, Cagri Sever, Eben Prabhu, Reda Adimi, Carlos Engler-Pinto
Abstract Cylinder head design is a highly challenging task for modern engines, especially for the proliferation of boosted, gasoline direct injection engines (branded EcoBoost® engines by Ford Motor Company). The high power density of these engines results in higher cylinder firing pressures and higher operating temperatures throughout the engine. In addition to the high operating stresses, cylinder heads are normally heat treated to optimize their mechanical properties; residual stresses are generated during heat treatment, which can be detrimental for high-cycle fatigue performance. In this paper, a complete cylinder head high cycle fatigue CAE analysis procedure is demonstrated. First, the heat treatment process is simulated. The transient temperature histories during the quenching process are used to calculate the distribution of the residual stresses, followed by machining simulation, which results in a redistribution of stress.
Viewing 151 to 180 of 109758